2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析_第1页
2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析_第2页
2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析_第3页
2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析_第4页
2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年云南省曲靖市活水中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某所学校计划招聘男教师名,女教师名,和须满足约束条件

则该校招聘的教师人数最多是

A.6

B.8

C.10

D.12参考答案:C略2.已知等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=20,则S9=()A.18 B.36 C.60 D.72参考答案:B【考点】等差数列的前n项和.【分析】由等差数列的通项公式得a3+a4+a5+a6+a7=5a5=20,解得a5=4,从而S9=,由此能求出结果.【解答】解:∵等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=20,∴a3+a4+a5+a6+a7=5a5=20,解得a5=4,∴S9==36.故选:B.【点评】本题考查等差数列的前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.3.已知,则二项式的二项式系数之和与各项系数之和的积为()A.0 B.-1 C.1 D.以上都不对参考答案:B【分析】由定积分的运算性质和定积分的几何意义,求得,进而得二项式系数之和,再令,可得展开式的各项之和为,即可求解,得到答案。【详解】由定积分的运算性质,可得,又由表示圆的上半圆的面积,即,所以,又由,所以,所以二项式为的二项式系数之和为,令,可得展开式的各项之和为,所以二项式系数之和与各项系数之和的积为,故选B。【点睛】本题主要考查了定积分性质及运算,以及二项式系数之和与项的系数之和的求解及应用,其中呢解答中熟练应用定积分的性质求得的值,以及合理求解二项式系数与项的系数之和是解答的关键,着重考查了推理与运算能力,属于中档试题。4.若函数在内有极小值,则A.

B.

C.

D.参考答案:A略5.记等差数列{an}的前n项和为Sn,利用倒序求和的方法,可将Sn表示成首项a1、末项an与项数n的一个关系式,即公式Sn=;类似地,记等比数列{bn}的前n项积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,可将Tn表示成首项b1、末项bn与项数n的一个关系式,即公式Tn=()A. B. C. D.(b1bn)参考答案:D【考点】8M:等差数列与等比数列的综合.【分析】由倒序求和的方法,可得等比数列中,运用倒序相乘的方法,结合等比数列的性质,即可得到所求积.【解答】解:等比数列{bn}的前n项积为Tn,可得Tn=b1b2…bn,Tn=bnbn﹣1…b1,相乘可得Tn2=(b1bn)(b2bn﹣1)…(bnb1)=(b1bn)n,bn>0(n∈N*),可得Tn=(b1bn).故选:D.【点评】本题考查等比数列的性质和类比思想方法,注意等差数列的前n项和的推导方法,考查推理和运算能力,属于中档题.6.等比数列{an}中,a1+a2+a3+…+an=2n-1,则a12+a22+a32+…+an2等于(

).A

B

C

D参考答案:D略7.极坐标系中,过点且与极轴垂直的直线方程为(

)A、

B、

C、

D、参考答案:B8.设a∈R,若函数y=ex+ax,x∈R,有大于零的极值点,则()A.a<﹣1 B.a>﹣1 C. D.参考答案:A【考点】6D:利用导数研究函数的极值.【分析】先对函数进行求导令导函数等于0,原函数有大于0的极值故导函数等于0有大于0的根,然后转化为两个函数观察交点,确定a的范围.【解答】解:∵y=ex+ax,∴y'=ex+a.由题意知ex+a=0有大于0的实根,令y1=ex,y2=﹣a,则两曲线交点在第一象限,结合图象易得﹣a>1?a<﹣1,故选A.【点评】本题主要考查函数的极值与其导函数的关系,即函数取到极值时一定有其导函数等于0,但反之不一定成立.9.曲线在点(1,3)处的切线的倾斜角为(

)A.30°

B.45°

C.60°

D.120°参考答案:B略10.掷一枚均匀的硬币4次,出现正面的次数多于反面的次数的概率为 A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数的递减区间是__________参考答案:略12.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是(

)A.20

B.18

C.3

D.0参考答案:A13.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=________

.参考答案:略14.两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;四条直线相交,最多有6个交点;则五条直线相交,最多有___________个交点;推广到n()条直线相交,最多有____________个交点.

参考答案:10,略15.一个抛物线型拱桥,当水面离拱顶2m时,水面宽4m.若水面下降2m,则水面宽度为m.参考答案:考点:抛物线的应用.专题:圆锥曲线的定义、性质与方程.分析:如图所示,建立直角坐标系.设抛物线的方程为x2=﹣2py(p>0).利用当水面离拱顶2m时,水面宽4m.可得B(2,﹣2).代入抛物线方程可得22=﹣2p×(﹣2),解得p.设D(x,﹣4),代入抛物线方程即可得出.解答:解:如图所示,建立直角坐标系.设抛物线的方程为x2=﹣2py(p>0).∵当水面离拱顶2m时,水面宽4m.∴B(2,﹣2).代入抛物线方程可得22=﹣2p×(﹣2),解得p=1.∴抛物线的标准方程为:x2=﹣2y.设D(x,﹣4),代入抛物线方程可得x2=﹣2×(﹣4),解得x=.∴|CD|=4.故答案为:4.点评:本题考查了抛物线的标准方程及其应用,考查了数形结合的思想方法,考查了计算能力,属于基础题.16.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,这个平面图形的面积为______

参考答案:略17.写出命题“若a>0,则a>1”的逆否命题:___________________________.参考答案:若a≤1,则a≤0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知函数.(1)若为函数的一个极值点,试确定实数的值,并求此时函数的极值;(2)求函数的单调区间.参考答案:③同理可得,当a<0时,函数f(x)在(-∞,a)上单调递增,在(a,0)上单调递减,在(0,+∞)上单调递增.……7分综上所述,当a=0时,函数f(x)的单调递增区间是(-∞,+∞);当a>0时,函数f(x)的单调递增区间是(-∞,0)和(a,+∞),单调递减区间是(0,a);当a<0时,函数f(x)的单调递增区间是(-∞,a)和(0,+∞),单调递减区间是(a,0).……………………12分19.某单位为了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

气温()181310-1用电量(度)24343864根据表中数据求用电量y度与气温x℃之间的线性回归方程.附:参考答案:20.已知函数f(x)(x∈R),f′(x)存在,记g(x)=f′(x),且g′(x)也存在,g′(x)<0.(1)求证:f(x)≤f(x0)+f′(x0)(x﹣x0);(x0∈R)(2)设n),且λ1+λ2+…+λn=1,xi∈R(i=1,…,n)(n∈N+)求证:λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn)(3)已知a,f(a),f[f(a)],f{f[(f(a)]}是正项的等比数列,求证:f(a)=a.参考答案:【考点】数列的应用;导数的运算.【分析】(1)构造辅助函数?(x)=f(x)﹣f(x0)﹣f'(x0)(x﹣x0),求导,根据函数的单调性求得?(x)的极大值,?(x)≤?(x0)=0,即可得f(x)≤f(x0)+f'(x0)(x﹣x0);(2)由(1)可知,两边分别同乘以λ1,λ2,λ3,…λn,采用累加法,得λ1f(x1)+λ2f(x2)+…+λnf(xn)≤(λ1+λ2+…+λn)f(x0)+f'(x0)?[λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)],由λ1+λ2+…+λn=1,设x0=λ1x1+λ2x2+…+λnxn,则λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)=0,即可证明λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn);(3)分别求得f(a)=aq,f[f(a)]=aq2,f{f[f[f(a}}=aq3,λx1+(1﹣λ)x2=aq,f[λx1+(1﹣λ)x2]=f(aq)=f[f(a)]=aq2,可得:=f[λx1+(1﹣λ)x2],由n=2,λ1=λ,λ2=1﹣λ,即λf(x1)+(1﹣λ)f(x2)≤f[λx1+(1﹣λ)x2],当且仅当x1=x2时成立,即a=aq2?a=1,可得f(a)=a.【解答】解:(1)证明:设?(x)=f(x)﹣f(x0)﹣f'(x0)(x﹣x0),则?'(x)=f'(x)﹣f'(x0)∵g'(x)<0故g(x)=f'(x)为减函数,则x=x0为?(x)的极大值点.∵?(x)≤?(x0)=0,即f(x)≤f(x0)+f'(x0)(x﹣x0)(当且仅当在x=x0取到)(2)证明:由(1)可知:f(x1)≤f(x0)+f'(x0)(x1﹣x0),两边同乘以λ1得λ1f(x1)≤λ1f(x0)+λ1f'(x0)(x1﹣x0),λ2f(x2)≤λ2f(x0)+λ2f'(x0)(x2﹣x0),…λnf(xn)≤λnf(x0)+λnf'(x0)(xn﹣x0),上式各式相加,得λ1f(x1)+λ2f(x2)+…+λnf(xn)≤(λ1+λ2+…+λn)f(x0)+f'(x0)?[λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)],因为λ1+λ2+…+λn=1,设x0=λ1x1+λ2x2+…+λnxn,则λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)=0,由此,λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn))等号当且仅当在x1=x2=…=xn时成立,(3)证明:记公比为q,q>0,则f(a)=aq,f[f(a)]=aq2,f{f[f[f(a}}=aq3,取x1′=a,,λ=∈(0,1),则λx1+(1﹣λ)x2=aq,f[λx1+(1﹣λ)x2]=f(aq)=f[f(a)]=aq2,又∵λf(x1)+(1﹣λ)f(x2)=λf(a)+(1﹣λ)f(aq2),=λf(a)+(1﹣λ)f{f[f(a)]},=λaq+(1﹣λ)aq3,=aq3+λaq﹣λaq3,=aq3+λaq(1﹣q2),=aq3+aq(1﹣q2),=aq2,即aq3+λaq(1﹣q2)=aq2=f[λx1+(1﹣λ)x2],在(2)中取n=2,λ1=λ,λ2=1﹣λ,即λf(x1)+(1﹣λ)f(x2)≤f[λx1+(1﹣λ)x2],当且仅当x1=x2时成立,即a=aq2?q=1,∴f(a)=a.21.已知双曲线,、是双曲线的左右顶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论