




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省泸州市大渡中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=ax2+c,且f′(1)=2,则a的值为()A.1 B. C.﹣1 D.0参考答案:A【考点】导数的运算.【分析】先求出f′(x),再由f′(1)=2求出a的值.【解答】解:∵函数f(x)=ax2+c,∴f′(x)=2ax又f′(1)=2,∴2a?1=2,∴a=1故答案为A.【点评】本题考查导数的运算法则.2.命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(﹣∞,﹣1]∪[3,+∞),则()A.“p或q”为假 B.“p且q”为真 C.p真q假 D.p假q真参考答案:D【考点】复合命题的真假.【分析】若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=的定义域为x∈(﹣∞,﹣1]∪[3,+∞),q为真命题.【解答】解:∵|a+b|≤|a|+|b|,若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=的定义域为|x﹣1|﹣2≥0,即|x﹣1|≥2,即x﹣1≥2或x﹣1≤﹣2.故有x∈(﹣∞,﹣1]∪[3,+∞).∴q为真命题.故选D.3.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥事件但不是对立事件D.以上答案都不对参考答案:C考点:互斥事件与对立事件.专题:计算题.分析:事件“甲分得红牌”与事件“乙分得红牌”,由互斥事件和对立事件的概念可判断两事件是互斥事件,不是对立事件解答:解:把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,又事件“乙取得红牌”与事件“丙取得红牌”也是可能发生的,事件“甲分得红牌”与事件“乙分得红牌”不是对立事件,故两事件之间的关系是互斥而不对立,故选C.点评:本题考查事件的概念,考查互斥事件和对立事件,考查不可能事件,不可能事件是指一个事件能不能发生,不是说明两个事件之间的关系,这是一个基础题.4.设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A. B. C.6 D.5参考答案:B【考点】简单线性规划.【分析】画出不等式组表示的平面区域,求出直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,观察当目标函数过(4,6)时,取得最大12,即4a+6b=12,即2a+3b=6,要求+的最小值,先用乘“1”法进而用基本不等式即可求得最小值.【解答】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()≥=,当且仅当a=b=,取最小值.故选B.5.“1<m<2”是“方程表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:若方程+=1表示的曲线是焦点在y轴上的椭圆,则,即,解得1<m<2,即“1<m<2”是“方程+=1表示的曲线是焦点在y轴上的椭圆”的充要条件,故选:C6.已知和图象与轴切于,则的极值情况是
(
)A.极大值为,极小值为
B.极大值为,极小值为C.极大值为,没有极小值
D.极小值为,没有极大值参考答案:A略7.若,在它的逆命题、否命题、逆否命题中,真命题的个数有(
)个A
0
B
1
C
2
D
4参考答案:C8.2x2-5x-3<0的一个必要不充分条件是 (
)A.-<x<3 B.-<x<0C.-3<x< D.-1<x<6参考答案:D9.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率为(
)A.
B.
C.
D.参考答案:A10.若集合M={-1,0,1},N={0,1,2},则M∩N等于()A.{0,1}
B.{-1,0,1}C.{0,1,2}
D.{-1,0,1,2}参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为.参考答案:(1,2)【考点】抛物线的简单性质.【分析】由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.由定义可得|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值.yA,代入抛物线方程可得xA.【解答】解:由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3﹣(﹣1)=4.此时yA=2,代入抛物线方程可得22=4xA,解得xA=1.∴点A(1,2).故答案为:(1,2).12.函数y=3x2﹣2lnx的单调减区间为
.参考答案:
【考点】利用导数研究函数的单调性.【分析】利用导数判断单调区间,导数大于0的区间为增区间,导数小于0的区间为减区间,所以只需求导数,再解导数小于0即可.【解答】解:函数y=3x2﹣2lnx的定义域为(0,+∞),求函数y=3x2﹣2lnx的导数,得,y′=6x﹣,令y′<0,解得,0<x<,∴x∈(0,)时,函数为减函数.∴函数y=3x2﹣2lnx的单调减区间为故答案为13.已知函数,则的值为________.参考答案:略14.如图,过椭圆=1(a>b>1)上顶点和右顶点分别作圆x2+y2=1的两条切线的斜率之积为﹣,则椭圆的离心率的取值范围是.参考答案:【考点】椭圆的简单性质.【分析】由题意设出两切线方程,由点到直线的距离公式可得a与k,b与k的关系,代入椭圆离心率可得e与k的关系,求出函数值域得答案.【解答】解:由题意设两条切线分别为:y=kx+b,y=﹣(x﹣a)(k≠0),由圆心到两直线的距离均为半径得:,,化简得:b2=k2+1,a2=2k2+1.∴==(k≠0).∴0<e<.故答案为:.15.若直线与直线互相垂直,那么的值等于_____.参考答案:或略16.函数则的解集为
参考答案:略17.椭圆上一点到焦点的距离为2,是的中点,则等于
▲
.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,且为虚数单位),求复数的虚部.参考答案:1【分析】设出,代入方程,整理后利用复数相等的概念求出引入的参数、的值,即可求出复数,再求出复数确定虚部。【详解】设,代入方程,得出,故有,解得,∴,复数,则复数虚部为1.【点睛】本题考查了复数中基本知识的计算,共轭复数、虚部、复数相等的概念,复数模长的求法,复数的加减乘除混合运算,属于基础题。19.(本小题满分14分)牛顿在《流数法》一书中,给出了一种求方程近似解的数值方法——牛顿法.它的具体步骤是:①对于给定方程,考查其对应函数(左图中较粗曲线),在曲线上取一个初始点;②作出过该点曲线的切线,与轴的交点横坐标记为;③用替代再作出切线,重复以上过程得到.一直继续下去,得到数列,它们越来越接近方程的真实解.(其中,)如果给定一个精确度,我们可以根据上述方法得到方程的近似解.其算法程序框图为右图:请回答以下问题:(Ⅰ)写出框图中横线处用表示的关系式;(Ⅱ)若,,,则该程序运行的结果为多少?(Ⅲ)在(Ⅱ)条件下(精确度不计),证明所得满足使数列为等比数列,且.参考答案:(I)由已知,的方程为,令得;
…2分(II),,故,
…………3分当时,,此时,进行循环,当时,,此时,故输出;
………
5分(III)由(II),数列满足且,, ………………
7分故,而,为以为首项,为公比的等比数列.
………………
9分,得,
………………
10分方法一:(与等比数列比较)考查,比较与的大小,当时,,当时,由于,时取等(其中等号均在时取得).故
………………
12分
……………
14分方法二:(裂项求和)当时,由得,
………
12分
…………
14分20.过抛物线y2=2Px(P>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M,N两点,自M,N向直线l:x=﹣a作垂线,垂足分别为M1,N1.(1)当a=时,求证:AM1⊥AN1;(2)记△AMM1,△AM1N1,△ANN1的面积分别为S1,S2,S3,是否存在λ,使得对任意的a>0,均有S22=λS1?S3成立,若存在,求出λ的值;若不存在,说明理由.参考答案:【考点】直线与圆锥曲线的关系;抛物线的简单性质.【分析】(1)当a=时,如图所示,设M,N.则,,.由题意可设直线MN的方程为my+=x,与抛物线方程联立得到根与系数的关系.只要证明=0即可.(2)假设存在λ,使得对任意的a>0,均有S22=λS1?S3成立.设M,N.则M1(﹣a,y1),N1(﹣a,y2),不妨设y1>0.设直线MN:my+a=x,与抛物线方程联立得到根与系数的关系,用坐标分别表示S1,S2,S3.利用S22=λS1?S3成立即可得出λ.【解答】解:(1)当a=时,如图所示,设M,N.则,,.则=(﹣p,y1)?(﹣p,y2)=p2+y1y2.(*)设直线MN的方程为my+=x,联立,化为y2﹣2pmx﹣p2=0.∴.代入(*)可得=p2﹣p2=0.∴AM1⊥AN1;(2)假设存在λ,使得对任意的a>0,均有S22=λS1?S3成立.设M,N.则M1(﹣a,y1),N1(﹣a,y2),不妨设y1>0.设直线MN:my+a=x,联立,化为y2﹣2pmy﹣2pa=0.∵△>0成立,∴y1+y2=2pm,y1y2=﹣2pa.S1==,同理S3=,.∴S1S3====pa2(pm2+2a).==a2(4p2m2+8pa)=4pa2(pm2+2a),∴4pa2(pm2+2a)=λpa2(pm2+2a),解得λ=4.故存在λ=4,使得对任意的a>0,均有S22=λS1?S3成立.21.定义:称为n个正数p1,p2,…,pn的“均倒数”,已知数列{an}的前n项的“均倒数”为.(1)求{an}的通项公式(2)设Cn=,求数列{cn}的前n项和Sn.参考答案:【考点】数列的求和;数列递推式.【专题】计算题;新定义;转化思想;综合法;等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(1)数列{an}的前项和为Sn=n(n+2),由此能求出{an}的通项公式.(2)由Cn==,利用错位相减法能求出数列{cn}的前n项和Sn.【解答】解:(1)∵数列{an}的前n项的“均倒数”为,∴根据题意得数列{an}的前项和为:Sn=n(n+2),当n≥2时,an=Sn﹣Sn﹣1=n(n+2)﹣(n﹣1)(n﹣2)=2n+1,n=1时,a1=S1=3适合上式,∴an=2n+1.(2)由(1)得Cn==,∴,①3Sn=,②②﹣①,得:2Sn=3+=3+=,∴Sn=2﹣.【点评】本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.22.小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示,但因不小心将部分数据损毁,只是记得女生选择几何题的频率是.
几何题代数题合计男同学22830女同学
合计
(1)根据题目信息补全上表;(2)能否根据这个调查数据判断有97.5%的把握认为选代数题还是几何题与性别有关?参考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南财经大学《口腔正畸学》2023-2024学年第二学期期末试卷
- 中央美术学院《资源与环境(环境工程)领域工程伦理》2023-2024学年第二学期期末试卷
- 江西省宜春市上高县上2025届高三下学期期末模拟卷(一)物理试题含解析
- 湖南衡阳县2024-2025学年高三3月第一次模拟考试(英语试题理)试题含解析
- 小儿呼衰护理疾病查房
- 南红基础知识
- 廉政知识竞答
- 康复护理学给药
- 信息技术 第二册(五年制高职)课件 8.2.3.1 选择结构的语法
- 传统文化中秋课件
- 小学生计算错误纠正策略论文
- 2023年4月自考02400建筑施工一试题及答案含评分标准
- 《实验骨伤科学》教学大纲-供五年制骨伤专业使用
- 河北省高中学业水平考试通用技术试题
- 【高中生物】基因工程的基本操作程序课件 2022-2023学年高二下学期生物人教版选择性必修3
- 沉浸式教学在初中英语阅读教学中的实践与研究 论文
- 投标前期顾客满意度调查表
- JJF 1281-2011烟草填充值测定仪校准规范
- GB/T 5271.31-2006信息技术词汇第31部分:人工智能机器学习
- GB/T 21302-2007包装用复合膜、袋通则
- 华测使用手册
评论
0/150
提交评论