版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市蒙阳中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设M=(,且a+b+c=1(a,b,c均为正),则M的范围是(
)A.
B.
C.
D.参考答案:D略2.已知△ABC的周长为20,且顶点B(0,﹣4),C(0,4),则顶点A的轨迹方程是()A.(x≠0) B.(x≠0)C.(x≠0) D.(x≠0)参考答案:B【考点】椭圆的定义.【分析】根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.【解答】解:∵△ABC的周长为20,顶点B(0,﹣4),C(0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.3.若点A(,4-μ,1+2γ)关于y轴的对称点是B(-4λ,9,7-γ),则λ,μ,γ的值依次为:(
)A.1,-4,9
B.2,-5,-8
C.-3,-5,8
D.2,5,8参考答案:B略4.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A. B.π C.π D.24π参考答案:B【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π?(2x2﹣)|=.故选B.5.为了解某商品销售量y(件)与销售价格x(元/件)的关系,统计了(x,y)的10组值,并画成散点图如右图,则其回归方程可能是(
)A.
B.C.
D.
参考答案:B6.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种
B.24种
C.45种
D.90种参考答案:D7.定义运算则符合条件的复数z对应的点在(
)
A.第四象限
B.第三象限 C.第二象限
D.第一象限参考答案:D8.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为()A.(﹣2,+∞) B.(0,+∞) C.(1,+∞) D.(4,+∞)参考答案:B【考点】利用导数研究函数的单调性;奇偶性与单调性的综合.【分析】构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称∴y=f(x)的图象关于x=2对称∴f(4)=f(0)又∵f(4)=1,∴f(0)=1设g(x)=(x∈R),则g′(x)==又∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<ex∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.9.函数的定义域为(
) A.{x|x≠0} B.(﹣1,1) C. D.参考答案:D考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由函数的解析式可得,解得x的范围,即可得到函数的定义域.解答: 解:∵函数,∴,解得﹣1≤x<0,或0<x≤1,故选D.点评:本题主要考查求函数的定义域的方法,属于基础题.10.已知直线和不重合的两个平面,,且,有下面四个命题:
①若∥,则∥;
②若∥,则∥;
③若,则;
④若,则
其中真命题的序号是
A.①②
B.②③
C.②③④D.①④参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.P在曲线上移动,在点P处的切线的斜率为k,则k的取值范围是
.参考答案:k≥1【考点】利用导数研究曲线上某点切线方程.【分析】利用导数的几何意义求出切线的斜率,再由二次函数的值域求法即可得到.【解答】解:设切点P(x0,y0),在此点的切线的斜率为k.∵,∴f′(x)=3x2+1,∴f′(x0)=3x02+1,(x0∈R).∴斜率k=3x02+1≥1,故答案为:k≥1.12.为了调查本校高中男生的身高情况,在高中男生中随机抽取了80名同学作为样本,测得他们的身高后,画出频率分布直方图如下:估计该高中男生身高的平均数为_____cm,估计该高中男生身高的中位数为_____cm.(精确到小数点后两位数字)参考答案:174.75
175.31略13.已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为
.参考答案:14.对于任意,都有恒成立,则实数a取值范围是.参考答案:[0,1)15.在△ABC中,150°,则b=
参考答案:716.已知三条直线ax+2y+8=0,4x+3y=10和2x﹣y=10中没有任何两条平行,但它们不能构成三角形的三边,则实数a的值为
.参考答案:﹣1【考点】两条直线的交点坐标.【专题】直线与圆.【分析】由已知可得直线ax+2y+8=0必经过4x+3y=10和2x﹣y=10的交点,求出即可.【解答】解:由三条直线ax+2y+8=0,4x+3y=10和2x﹣y=10中没有任何两条平行,但它们不能构成三角形的三边,则直线ax+2y+8=0必经过4x+3y=10和2x﹣y=10的交点.联立解得,把x=4,y=﹣2代入ax+2y+8=0得a=﹣1.故答案为﹣1.【点评】正确理解题意是解题的关键.17.数列的通项公式,前项和为,则
参考答案:1006三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设,.
(1)求在上的值域;
(2)若对于任意,总存在,使得成立,求的取值范围.参考答案:解:(1)法一:(导数法)
在上恒成立.
∴在[0,1]上增,∴值域[0,1].………………6分
法二:,用复合函数求值域.………………6分
法三:
用双勾函数求值域.………………6分
(2)值域[0,1],在上的值域.
由条件,只须,∴.……………12分
19.如图,四边形ABCD为矩形,四边形BCEF为直角梯形,,,,,,.(1)求证:.(2)求证:平面.(3)若二面角的大小为120°,求直线DF与平面ABCD所成的角.参考答案:见解析.证明:()∵四边形为矩形,∴,又∵,,平面,,∴平面,∵平面,∴.()∵,平面,平面,∴平面.∵四边形是矩形,∴,又平面,平面,∴平面,又,平面,,∴平面平面,∵平面,∴平面.()过作与的延长线垂直,是垂足,连结.∵,,∴就是二面角的平面角,∴,,∴,,∵,,,∴.∵平面,平面,∴平面平面,又平面平面,,∴平面,∴是直线与平面所成的角,∴,∴,∴直线与平面所成的角为.20.已知椭圆C:,F为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C的方程;(2)直线l:y=kx+m(km≠0)与椭圆C交于A、B两点,若线段AB中点在直线x+2y=0上,求△FAB的面积的最大值.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)利用F为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2,建立方程组,求得几何量,即可求得椭圆方程;(2)直线l:y=kx+m(km≠0)与椭圆联立,利用线段AB中点在直线x+2y=0上求得k的值,求出|AB|,及点F到直线AB的距离,表示出三角形的面积,利用求导数的方法,即可确定△FAB的面积的最大值.【解答】解:(1)由题意,解得,∴所求椭圆方程为.
…(4分)(2)直线l:y=kx+m(km≠0)与椭圆联立,消去y得(1+2k2)x2+4kmx+2m2﹣4=0,…△=16k2m2﹣4(1+2k2)(2m2﹣4)=8(6﹣m2)>0,∴设A(x1,y1),B(x2,y2)P(x0,y0),由韦达定理得=,.由点P在直线x+2y=0上,得k=1.
…(7分)所以|AB|==.又点F到直线AB的距离.∴△FAB的面积为=(|m|<,m≠0).…(10分)设u(m)=(6﹣m2)(m+)2(|m|<,m≠0),则令u′(m)=﹣2(2m+3)(m+)(m﹣)=0,可得m=﹣或m=﹣或m=;当时,u′(m)>0;当时,u′(m)<0;当时,u′(m)>0;当时,u′(m)<0又u()=,所以当m=时,△FAB的面积取最大值…(12分)【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查利用导数的方法求函数的最值,属于中档题.21.(12分)已知函数f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)当a=1时,求f(x)的极值,并证明f(x)>g(x)+,x∈(0,e]恒成立;(2)是否存在实数a,使f(x)的最小值为3?若存在,求出a的值;若不存在,请说明理由.参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,由x∈(0,e]和导数的性质能求出f(x)的单调区间、极值,f(x)=x﹣lnx在(0,e]上的最小值为1,由此能够证明f(x)>g(x)+.(2)求出函数f(x)的导数,由此进行分类讨论能推导出存在a=e2.【解答】解:(1)f′(x)=1﹣=,∵x∈(0,e],由f′(x)=>0,得1<x<e,∴增区间(1,e).由f′(x)<0,得0<x<1.∴减区间(0,1).故减区间(0,1);增区间(1,e).所以,f(x)极小值=f(1)=1.令F(x)=f(x)﹣g(x)=x﹣lnx﹣﹣,求导F′(x)=1﹣﹣=,令H(x)=x2﹣x+lnx﹣1则H′(x)=2x﹣1+=(2x2﹣x+1)>0易知H(1)=﹣1,故当0<x<1时,H(x)<0,即F′(x)<01<x<e时,H(x)>0,即F′(x)>0故当x=1时F(x)有最小值为F(1)=>0故对x∈(0,e]有F(x)>0,∴f(x)>g(x)+.(2)f′(x)=a﹣=,①当a≤0时,f(x)在(0,e)上是减函数,∴ae﹣1=3,a=>0,(舍去).②当0<a<时,f(x)=,f(x)在(0,e]上是减函数,∴ae
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届廊坊市高三语文上学期期末检测考试卷及答案解析
- 农药经营雇佣合同(2篇)
- 上海市闵行区24校联考2025届中考猜题生物试卷含解析
- 《利率与通货膨胀》课件
- 2025购车合同的缺陷条款有些
- 2024年度四川省公共营养师之四级营养师基础试题库和答案要点
- 2024年度四川省公共营养师之二级营养师通关试题库(有答案)
- 2025年户外照明灯具行业分析报告及未来五至十年行业发展报告
- 2025借款合同范文条例
- 芯片产业化项目可行性研究报告
- (完整版)病例演讲比赛PPT模板
- 国开大学2020年09月1317《社会工作行政(本)》期末考试参考答案
- 通达信公式编写学习资料
- 社会责任管理体系培训课件
- 房屋结构安全隐患自查排查记录表
- 统编版四年级上册语文期末总复习知识PPT
- 《有限元分析及应用》(曾攀清华大学出版社)第四章课后习题答案
- GB/T 9797-2005金属覆盖层镍+铬和铜+镍+铬电镀层
- 医疗机构合理用药的指标
- 《网络文件提交系统的设计与实现【论文】12000字》
- 公司仓库检查表
评论
0/150
提交评论