先进材料与器件 用于固定电能 存储应用_第1页
先进材料与器件 用于固定电能 存储应用_第2页
先进材料与器件 用于固定电能 存储应用_第3页
先进材料与器件 用于固定电能 存储应用_第4页
先进材料与器件 用于固定电能 存储应用_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedMaterialsandDevicesforStationaryElectricalEnergyStorageApplications

DECEMBER2010

SPONSOREDBY

U.S.DepartmentofEnergy,OfficeofElectricityDeliveryandEnergyReliability

AdvancedResearchProjectsAgency—Energy

ORGANIZEDBY

SandiaNationalLaboratories

PacificNorthwestNationalLaboratory

TheMinerals,Metals&MaterialsSociety(TMS)

PREPAREDBY

ABOUTTHISREPORT

ThisreportwassupportedbySandiaNationalLaboratoriesandPacificNorthwestNationalLaboratoryonbehalfoftheU.S.DepartmentofEnergy’s(DOE)OfficeofElectricityDeliveryandEnergyReliabilityandtheAdvancedResearchProjectsAgency-Energy(ARPA-E).

ThisdocumentwaspreparedbySarahLichtner,RossBrindle,LindsayKishter,andLindsayPackofNexightGroupunderthedirectionofDr.WarrenHunt,ExecutiveDirector,TheMinerals,Metals,andMaterialsSociety(TMS).ThecooperationofASMInternationalthroughtheEnergyMaterialsInitiative,aswellastheAmericanCeramicSociety,theElectrochemicalSociety,andtheMaterialsResearchSociety,isgratefullyacknowledged.

ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

Notice:ThisreportwaspreparedasanaccountofworksponsoredbyanagencyoftheUnitedStatesgovernment.NeithertheUnitedStatesgovernmentnoranyagencythereof,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalliabilityorresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebytradename,trademark,manufacturer,orotherwisedoesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesgovernmentoranyagencythereof.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesgovernmentoranyagencythereof.

CONTENTS

ExecutiveSummary 1

IntroductionandProcess 5

EnergyStorage:TheNeedforMaterialsand

DeviceAdvancesandBreakthroughs 7

IntegratingEnergyStorage

intotheElectricGrid 11

AMaterials-BasedApproachto

AdvancingEnergyStorageTechnologies 15

AdvancedLead-AcidandLead-CarbonBatteries 17

Lithium-IonBatteries 21

Sodium-BasedBatteries 25

FlowBatteries 29

PowerTechnologies 33

EmergingTechnologies 37

ThePathForward 41

References 43

WorkshopReportContributors 45

ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

1

EXECUTIVESUMMARY

EXECUTIVESUMMARY

Reliableaccesstocost-effectiveelectricityisthebackboneoftheU.S.economy,andelectricalenergystorageisanintegralelementinthissystem.Withoutsignificantinvestmentsinstationaryelectricalenergystorage,the

currentelectricgridinfrastructurewillincreasinglystruggletoprovidereliable,affordableelectricity,jeopardizingthetransformationalchangesenvisionedforamodernizedgrid.InvestmentinenergystorageisessentialforkeepingpacewiththeincreasingdemandsforelectricityarisingfromcontinuedgrowthinU.S.productivity,shiftsinandcontinuedexpansionofnationalculturalimperatives(e.g.,thedistributedgridandelectricvehicles),andtheprojectedincreaseinrenewableenergysources.

StationaryenergystoragetechnologiespromisetoaddressthegrowinglimitationsofU.S.electricityinfrastructure.Avarietyofnear-,mid-,andlong-termstorageoptionscansimultaneouslyprovidemultiplebenefitsthathavethepotentialtogreatlyenhancethefutureresilienceoftheelectricgridwhilepreservingitsreliability.Thesebenefitsincludeprovidingbalancingservices(e.g.,regulationandloadfollowing),whichenablesthewidespreadintegrationofrenewableenergy;supplyingpowerduringbriefdisturbancestoreduceoutagesandthefinanciallossesthataccompanythem;andservingassubstitutesfortransmissionanddistributionupgradestodeferoreliminatethem.

Significantadvancesinmaterialsanddevicesareneededtorealizethepotentialofenergystoragetechnologies.Currentlarge-scaleenergystoragesystemsarebothelectrochemicallybased(e.g.,advancedlead-carbonbatteries,lithium-ionbatteries,sodium-basedbatteries,flowbatteries,andelectrochemicalcapacitors)andkinetic-energy-based(e.g.,compressed-airenergystorageandhigh-speedflywheels).Electricpowerindustryexpertsanddevicedevelopershaveidentifiedareasinwhichnear-terminvestmentcouldleadtosubstantialprogressinthesetechnologies.Deployingexistingadvancedenergystoragetechnologiesintheneartermcanfurthercapitalizeontheseinvestmentsbycreatingtheregulatoryprocessesandmarketstructuresforongoinggrowthinthissector.Atthesametime,along-termfocusontheresearchanddevelopmentofadvancedmaterialsanddeviceswillleadtonew,morecost-effective,efficient,andreliableproductswiththepotentialtotransformtheelectricgrid.

STRATEGICPRIORITIESFORENERGYSTORAGEDEVICEOPTIMIZATIONTHROUGHMATERIALSADVANCES

Advancedmaterials,deviceresearchanddevelopment,anddemonstrationsarerequiredtoaddressmanyofthechallengesassociatedwithenergystoragesystemeconomics,technicalperformance,anddesignthatmustbeovercomeforthesedevicestomeettheneedsandperformancetargetsoftheelectricpowerindustry.Theadvancementoflarge-scaleenergystoragetechnologieswillrequiresupportfromtheU.S.DepartmentofEnergy(DOE),industry,andacademia.Figure1outlinesthehigh-priorityresearchanddevelopmentactivitiesthatarenecessarytoovercomethelimitationsoftoday’sstoragetechnologiesandtomakegame-changingbreakthroughsintheseandothertechnologiesthatareonlynowstartingtoemerge,suchasmetal-airbatteries,liquid-metalsystems,regenerative

fuelcells,advancedcompressed-airenergystorage,andsuperconductingmagneticelectricalstorage.Thepriorityactivitiesoutlinedinthisreportfocusonunderstandinganddevelopingmaterialscoupledwithdesigning,developing,anddemonstratingcomponentsandsystems;however,thereisalsorecognitionthatthisworkneedstobedoneinthecontextofstrategicmaterialsselectionandinnovativesystemdesign.

STRATEGICMATERIALSSELECTIONimpliesthatwhilesignificantcostreductioninstorageisparamountandmaterialsmakeupthelargestportionofsystemcost,itiscriticalthatstoragedevicesutilizematerialsthatarebothlowerincostandabundantintheUnitedStates.Newmaterialsdevelopmentcanexpandtheoptionsavailabletoequipmentdevelopers,potentiallyofferingimportantcostandperformanceadvantages.

INNOVATIVEDESIGNSofstoragetechnologiescandrivethedevelopmentofdevicesthatcanbeaffordablymanufacturedatgridscale.Designsimplificationsanddesignsforefficientmanufacturingcanenablestoragesystemstobeproducedatlowercostsviaautomatedmanufacturingwithnecessaryqualitycontrolprocesses.Effectivesystemdesignalsoensuresthatcontrolsystemsandpowerelectronicsenableefficient,secure,andreliableinteroperabilitywiththeelectricgrid.

ThesuccessoftheseactivitiesandinitiativeswillrequiresignificantsupportfromDOE.TohelpDOEbetterfocusitsresourcesovertime,Figure1dividesthesolutionsforeachstoragetechnologybythetimeframeinwhichtheywillimpactthemarket:nearterm(lessthan5years),midterm(5–10years),andlongterm(10–20years).CommittingtotheseactivitieswillallowDOE,technologydevelopers,andtheelectricpowerindustrytopursueacoherenttechnologydevelopmentanddemonstrationstrategyforenergystoragetechnologiesingrid-scaleapplications.

FIGURE1:PRIORITIZEDACTIVITIESTOADVANCEENERGYSTORAGETECHNOLOGIES

ADVANCEDLEAD-ACIDANDLEAD-CARBONBATTERIES

LITHIUM-IONBATTERIES

NEARTERM(<5years) MIDTERM(5–10years) LONGTERM(10–20years)

ConductDOE-fundedvalidationtestsofsystemlifetime,ramprates,etc.

Understandpoormaterialsutilizationthroughdiagnosticsandmodeling

Develophigh-power/energycarbonelectrodeforlead-carbonbattery

Developmodelsforiontransportthroughsolids(inorganicsolids,polymers)

Developnewintercalationcompoundswithlowcyclingstrainandfatigue;aimfor10,000cyclesat80%depthofdischarge

Conductexperimentstodevelopaquantitativeunderstandingofcatastrophiccellfailure

anddegradation

Designandfabricatenovelelectrodearchitecturestoincludeelectrolyteaccesstoredoxactivematerialandshortionandelectrondiffusionpaths(e.g.,non-planargeometries)

Developahighlyconductive,inorganic,solid-stateconductorforsolid-stateLi-ionbatteries

Developrobustplanarelectrolytestoreducestacksizeandresistance

Decreaseoperatingtemperature,preferablytoambienttemperature

Developatruesodium-airbatterythatprovidesthehighestvalueinalmostanycategoryofperformance

Implementpilot-scaletestingofbatterysystemstodevelopperformanceparametersforgridapplications

Usesurface-sciencetechniquestoidentifyspeciesonsodium-ionanodesandcathodes

SODIUM-BASEDBATTERIES

2 ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

EXECUTIVESUMMARY

EMERGINGTECHNOLOGIES

POWERTECHNOLOGIES

CROSSCUTTING

ACTIVITIES

FLOWBATTERIES

NEARTERM(<5years) MIDTERM(5–10years) LONGTERM(10–20years)

Establishacenterforstackdesignandmanufacturingmethods,includingjointandsealdesign

Improvemembranestoenableminimumcrossover,lowersystemcost,increasedstability,andreducedresistance

Developnon-aqueousflowbatterysystemswithwidercelloperatingvoltagestoimproveefficiency

Developlow-cost,formable,chemicallyandthermallytolerantresinsforpiping,stacks,andtanks

Improvemasstransportviaatailoredcatalystlayerandflowfieldconfigurationstoincreaseoperatingcurrentdensityandreducesystemcostperkilowatt

Developaninline,real-timesensorthatcandetectimpuritiesinelectrolytecompositionforvariousflowbatterychemistries

Createacomputationalfluidicscenteratanationallaboratoryoruniversity

Identifylow-costhydrogensuppressionmaterials(anti-catalysts)andredoxcatalystsfornegativeelectrodes

Developa1-megawattflywheelmotorcapableofvacuumoperationandsuperconduction

Optimizematerialsutilizationthroughdiagnosticsandmodeling

Develophigh-power/energycarbonelectrodeforelectrochemicalcapacitors

Develophublessflywheelrotorwithfourtimeshigherenergy

Improvethermalmanagementinendothermicelectrolysisreactionsandexothermicfuelcellreactionsinregenerativefuelcells

Developnewcatalystsformetal-airbatterieswithlowoverpotentialsforoxygenreductioninordertomakesystemsmoreefficient,cost-effective,andbifunctional

Exploretheuntappedpotentialofmultivalentchemistries

Developairelectrodesformetal-airbatterieswithhighelectrochemicalactivityandlowerpolarizationandresistance

Combinetechnologiesforsynergy

Takeanintegratedapproachtodegradationbycombiningmicrostructure/chemistryobservationswithmechanisticmodeling(bothdegradationandelectrochemicalmodels)andacceleratedtesting

ConductDOE-fundeddemonstrationsofallenergystoragetechnologies

Specifycycleandlifetestsforstationarypowerapplications

3

PAGE

4

ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

PAGE

5

WORKSHOPPARTICIPANTSPRIORITIZEENERGYSTORAGEACTIVITIESANDINITIATIVESTHROUGH2030.

INTRODUCTIONANDPROCESS

INTRODUCTIONANDPROCESS

Cost-effectiveenergystoragetechnologiesareakeyenablerofgridmodernization,addressingtheelectricgrid’smostpressingneedsbyimprovingitsstabilityandresiliency.InvestmentinenergystorageisessentialforkeepingpacewiththeincreasingdemandsforelectricityarisingfromcontinuedgrowthinU.S.productivity,shiftsinandcontinuedexpansionofnationalculturalimperatives(e.g.,emergenceofthedistributedgridandelectricvehicles),andtheprojectedincreaseinrenewableenergysources.Materials,theirprocessing,andthedevicesintowhichtheyareintegratedwillbecriticaltoadvancingcleanandcompetitiveenergystoragedevicesatthegridscale.

CurrentresearchanddemonstrationeffortsbytheU.S.DepartmentofEnergy(DOE),nationallaboratories,electricutilitiesandtheirtradeorganizations,storagetechnologyproviders,andacademicinstitutionsprovidethefoundationfortheextensiveeffortthatisneededtoacceleratewidespreadcommercialdeploymentofenergystoragetechnologies.Forgrid-scalestoragetobecomepervasive,theelectricpowerindustry,researchersofadvancedmaterialsanddevices,equipmentmanufacturers,policymakers,andotherstakeholdersmustcombinetheirexpertiseandresourcestodevelopanddeployenergystoragesystemsthatcanaddressthespecificstorageneedsoftheelectricpowerindustry.

Seekingtoacceleratethecommercializationofstationaryenergystorageatgridscale,TheMinerals,Metals&MaterialsSociety(TMS)joinedwiththeDOEOfficeofElectricityDeliveryandEnergyReliability,theDOEAdvancedResearchProjectsAgency-Energy,PacificNorthwestNationalLaboratory,andSandiaNationalLaboratoriestosponsorafacilitatedworkshop.Thisworkshopwasdesignedtogarnercriticalinformationfromkeystakeholderstodevelopapathforwardforgrid-scaleenergystorage.

Thirty-fivestakeholdersandexpertsfromacrossthematerialsscienceanddevicecommunitiesattendedtheworkshoponJune21–22,2010,inAlbuquerque,NewMexico.Immediatelyprecedingtheadvancedmaterialsanddevicesworkshop,stakeholdersandexpertsfromtheelectricpowerindustry,research,andgovernmentcommunitiescametogether

toidentifytargetsforenergystoragetechnologiesinspecificgridapplications,whichresultedintheworkshopreport,ElectricPowerIndustryNeedsforGrid-ScaleStorageApplications.Theparticipantsoftheadvancedmaterialsanddevicesworkshopusedthetargetsdeterminedinthepreviousworkshoptoidentifythelimitationsofexistingenergystoragetechnologiesandtheadvancesnecessaryforthesedevicestoachievewidespreadcommercialization.

Whileallenergystoragetechnologiesandsystemswerewithinthescopeoftheworkshop,themainfocuswasontechnologiesforwhichDOEinvolvementcouldaccelerateprogresstowardcommercialdeploymentatgridscale.Thetimeframeunderconsiderationwaspresentdaythrough2030,withparticularemphasisonthe1-to5-yearand5-to10-yeartimeframes.

Basedontheresultsoftheworkshop,thisreportprovidesguidancetoDOEforadvancingthefollowingenergystoragetechnologies:

Advancedlead-acidandlead-carbonbatteries

Lithium-ionbatteries

Sodium-basedbatteries

Flowbatteries

Powertechnologies(e.g.,electrochemicalcapacitorsandhigh-speedflywheels)

Emergingtechnologies(e.g.,metal-airbatteries,liquid-metalsystems,regenerativefuelcells,andadvancedcompressed-airenergystorage)

ThereportsfromtheseworkshopswillinformfutureDOEprogramplanningandultimatelyhelptocommercializeenergystorageatgridscale.

40-MEGAWATTENERGYSTORAGEFACILITYINFAIRBANKS,ALASKA

ENERGYSTORAGE:THENEEDFORMATERIALSANDDEVICEADVANCESANDBREAKTHROUGHS

ENERGYSTORAGE:THENEEDFORMATERIALSANDDEVICEADVANCESANDBREAKTHROUGHS

ElectricitydemandintheUnitedStatesissteadilyrising;in2009,electricityconsumptionwasmorethanfivetimeswhatitwas50yearsago.1Thisdemandisprojectedtoincreaseby1%peryearthrough2035.2Tomeettheincreasedelectricitydemandsexpectedby2035(excludingthoseexpectedfromtheintroductionofelectricvehicles),anadditional250gigawattsofgeneratingcapacitywillhavetobeaddedtotheelectricitygenerationinfrastructure.3However,theagingelectricgriddoesnothavetheabilitytotransmittheselargeamountsofelectricityfromthepointofgenerationtotheenduserortoaccommodatetheproposedincreasesingenerationfromrenewablesourceslikewindandsolar.4Advancedstoragetechnologieshavethepotentialtofulfillapplicationsacrosstheentiretyofthegridtoaddressthesegrowingissues.Tomeetincreasingelectricitydemandswhilecontinuingtoprovideconsumerswithelectricityatthelevelofcostandreliabilitytheyhavecometoexpect,theU.S.electricgridrequiresimmediateandcost-effectiveupdates.

StationaryenergystoragetechnologiespromisetoaddressthegrowinglimitationsofU.S.electricityinfrastructureandmeettheincreasingdemandforrenewableenergyuse.Withavarietyofnear-,mid-,andlong-termstorageoptions,energystoragedevicescansimultaneouslyprovidemultiplebenefitsthathavethepotentialtogreatlyenhancethefutureresilienceoftheelectricgridwhilepreservingitsreliability.Thesebenefitsincludeprovidingbalancingservices,suchasregulationandloadfollowing;supplyingpowerduringbriefdisturbancestoreduceoutagesandthefinanciallossesthataccompanythem;andservingassubstitutestohelpdeferoreliminatetransmissionanddistributionupgrades.

Significantadvancesinenergystoragematerialsanddevicesareneededtorealizethepotentialofthesetechnologies.Industrymembersanddevicedevelopershaveidentifiedareasinwhichshort-terminvestmentcouldleadtosubstantialprogress.Deployingexistingadvancedenergystoragetechnologiesintheneartermcanfurthercapitalizeontheseinvestmentsbyencouragingutilityoperatingexperienceandacceptance.Atthesametime,along-termfocusontheresearchanddevelopmentofadvancedmaterialsanddeviceswillleadtonew,lower-cost,andmoreefficientandreliableproductswiththepotentialtorevolutionizetheelectricgrid.

THECURRENTSTATEOFENERGYSTORAGETECHNOLOGIES

Storagetechnologiescurrentlybeingresearched,developed,anddeployedforgridapplicationsincludehigh-speedflywheels,electrochemicalcapacitors,traditionalandadvancedlead-acidbatteries,high-temperaturesodiumbatteries(e.g.,sodium-sulfurandsodium-nickel-chloride),lithium-ionbatteries,flowbatteries(e.g.,vanadiumredoxandzincbromine),compressed-airenergystorage,pumpedhydro,andotheradvancedbatterychemistries,suchasmetal-air,nitrogen-air,sodium-bromine,andsodium-ion.

Thegridapplicationsforthesetechnologiescanbelooselydividedintopowerapplicationsandenergymanagementapplications,whicharedifferentiatedbasedonstoragedischargeduration.Technologiesusedforpowerapplicationsaretypicallyusedforshortdurations,rangingfromfractionsofasecondtoapproximatelyonehour,toaddressfaultsandoperationalissuesthatcausedisturbances,suchasvoltagesagsandswells,impulses,andflickers.Technologiesusedforenergymanagementapplicationsstoreexcesselectricityduringperiodsoflowdemandforuseduringperiods

8

ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

ofhighdemand.Thesedevicesaretypicallyusedforlongerdurationsofmorethanonehourtoservefunctionsthatincludereducingpeakloadandintegratingrenewableenergysources.

TABLE1:SUITABLEGRIDAPPLICATIONSANDCURRENTSTATUSOFENERGYSTORAGETECHNOLOGIES5

ThetechnologiesinTable1representthosewiththegreatestpotentialforwidespreadgrid-scaledeployment.Thetableindicatestheapplicationsforwhichthetechnologiesarebestsuitedandprovidesanoverviewofthecurrentdevelopmentandcommercializationstatusofeachtechnology.Whileothertechnologiesarecurrentlyunderdevelopment,theyarenotadvancedenoughforgrid-scaleevaluation.

ENERGYSTORAGETECHNOLOGY

SUITABLEAPPLICATIONS

CURRENTDEVELOPMENTANDCOMMERCIALIZATIONSTATUS

HIGH-SPEEDFLYWHEELS(FW)

Highpotentialforpowerapplications

Currently,FWsareusedinmanyuninterruptedpowersupplyandaerospaceapplications,including2kW/6kWhsystemsusedintelecommunications.

FWfarmsarebeingplannedandbuilttostoremegawattsofelectricityforshort-durationregulationservices.

ELECTROCHEMICALCAPACITORS(EC)

Highpotentialforpowerapplications

SmallECsareamaturetechnology;systemswithahigherenergycapacityarestillindevelopment.

TRADITIONALLEAD-ACIDBATTERIES(TLA)

Highpotentialforpowerapplicationsandfeasibleforenergyapplications

TLAsaretheoldestandmostmatureenergystoragetechnologyavailable.

ThelargestTLAbatterysysteminoperationhasa10MW/40MWhcapacity.

ADVANCEDLEAD-ACIDBATTERIESWITHCARBON-ENHANCEDELECTRODES(ALA-CEE)

Highpotentialforbothpowerandenergyapplications

ALA-CEEsweredevelopedasaninexpensivebatteryforuseinhybridelectricvehicles.

SODIUMSULFURBATTERIES(NaS)

Highpotentialforbothpowerandenergyapplications

Thebatteryhasbeendemonstratedatmorethan190sitesinJapan,totalingmorethan270MWincapacity.

U.S.utilitieshaveinstalled9MWforpeakshaving,firmingwindpower,andotherapplications.Thedevelopmentofanother9MWsystemisinprogress.

SODIUM-NICKEL-CHLORIDE(Na-NiCl2)BATTERIES

Highpotentialforbothpowerandenergyapplications

ThebatteryoperatesatlowertemperaturesthanNaSbatteries.

ENERGYSTORAGE:THENEEDFORMATERIALSANDDEVICEADVANCESANDBREAKTHROUGHS

9

LITHIUM-ION(Li-ION)BATTERIES

Highpotentialforpowerapplicationsandreasonableforenergyapplications

Li-ionbatteriescurrentlydominatetheconsumerelectronicmarket.

Manufacturersareworkingtoreducesystemcostandincreasesafety,enablingthesebatteriestobeusedinlarge-scalemarkets.

ZINC-BROMINEBATTERIES(ZnBr)

Highpotentialforenergyapplicationsandreasonableforpowerapplications

ZnBrbatterieswith1MW/3MWhcapacitieshavebeentestedontransportabletrailersforutilityuse.

Largersystemsarecurrentlybeingtested.

VANADIUMREDOXBATTERIES(VRB)

Highpotentialforenergyapplicationsandreasonableforpowerapplications

VRBbatteriesupto500kW/5MWhhavebeeninstalledinJapan.

Thesebatterieshavebeentestedandusedforpowerapplications,supplyingupto3MWover1.5seconds.

COMPRESSED-AIRENERGYSTORAGE(CAES)

Highpotentialforenergyapplications

ThefirstcommercialCAESplantwasbuiltinGermanyin1978andhasa290MWcapacity.Anadditionalplantwitha110MWcapacitywasbuiltinAlabamain1991.

AdvancedadiabaticCAESsystemsarecurrentlybeingdeveloped.

PUMPEDHYDRO(PH)

Highpotentialforenergyapplications

PHrepresentsapproximately3%ofglobalgenerationcapacity—morethan90GWofPHstorageisinstalledworldwide.

WhilePHhasachievedwidespreaddeployment,allofthesuitablePHlocationsarecurrentlybeingused.

PAGE

10

ADVANCEDMATERIALSANDDEVICESFORSTATIONARYELECTRICALENERGYSTORAGEAPPLICATIONS

TheenergystoragetechnologiesinTable1arecurrentlyatdifferentstagesofdevelopment,demonstration,andcommercialization.Increasingtheamountofinstalledandplannedtechnologiesiscriticaltothewidespreaddeploymentofenergystoragesystemssoonerratherthanlater;forthisreason,manyotherinstallationsareplannedforthenextfiveyears.TheenergyandpowercapacitiesofsomeofthecurrentandplannedworldwideinstallationsareprovidedinFigure2.

FIGURE2:INSTALLEDANDPLANNEDENERGYSTORAGESYSTEMS,APRIL20106

Continuedinvestmentintheresearchanddevelopmentofnewandexistingenergystoragetechnologieshasthelong-termopportunitytorevolutionizetheelectricpowerindustry.Large-scaledemonstrationsofenergystoragesystemsencouragetheutilitybuy-inneededtomakeenergystoragefeasibleatgridscaleandprovideresearchersandtechnologydeveloperswithcriticalperformancedata.Astrategicapproachtothedeploymentofgrid-scaleenergystoragetechnologieshasthepotentialtoprovideacost-effective,near-termsolution.

11

INTEGRATINGENERGYSTORAGEINTOTHEELECTRICGRID

INTEGRATINGENERGYSTORAGEINTOTHEELECTRICGRID

Withtheincreasingpenetrationofvariablerenewableenergysources,electricitygenerationisnolongerconstant,yetmustcontinuetomeetfluctuatingelectricitydemands.Thisimbalance,alongwiththecurrentgridlimitationsandaginginfrastructure,hasthepotentialtochallengegridoperatorsastheymanageanincreasinglydynamicelectricgrid.Stationaryenergystoragetechnologiescanbeharnessedforavarietyofapplicationstohelptheelectricpowerindustryprovidecustomerswithreliableandaffordableelectricity.

Energystoragedevicesprovidenecessaryservicestotheelectricgrid,includingbalancingservices(e.g.,regulationandloadfollowing),toreduceoutagesandthefinanciallossesthataccompanythem.Byrespondingtothegridfasterthantraditionalgenerationsources,operatingefficientlyatpartialload,andvaryingdischargetimesdependingonapplicationneed,thesamestoragedevicescanaidinthedeferraloftransmissionanddistributioninfrastructuretokeepelectricityrateslow.

METRICSFORSTORAGETECHNOLOGIESANDAPPLICATIONS

Toprovidethemaximumbenefittoelectricityendusersandgainacceptancefromtheelectricpowerindustry,storagetechnologiesmustmeetcertaineconomic,technicalperformance,anddesigntargetsforenergystorageapplications.Whileeachenergystorageapplicationwillrequiredifferentspecifications,thesethreeinterrelatedfactorsmustbemettoensurethewidespreaddeploymentofgrid-scaleenergystorage.

SYSTEMECONOMICSisthemostimportantmetrictotheelectricpowerindustry.Consumersareaccustomedtohavingelectricitywhentheyneeditandataffordableprices,whichmakesthelifecyclecostofstoragetechnologiescriticaltotheirwidespreadadoption.Somestakeholdersintheelectricityindustrybelievethatanenergystoragetechnologymustbecompetitivewiththecostofcurrentlyavailabletechnologiesusedforpeakelectricitygeneration(e.g.,gasturbines)andmustprovideincreasedefficiencyandotherbenefitsthatadequatelyoffsetcapital,operating,andlifetimecosts.Whilethisviewfailstorecognizethefullbenefitsofenergystorage,somedecisionmakersintheelectricityindustrycontinuetoviewstorageasapeakgenerationsubstituteandvalueitaccordingly.Inordertoachievewidespreadimplementationatgridscale,thecostofstationarystoragedevic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论