平行线的判定(课件)_第1页
平行线的判定(课件)_第2页
平行线的判定(课件)_第3页
平行线的判定(课件)_第4页
平行线的判定(课件)_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章相交线与平行线5.2.2平行线的判定第一单元1.掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行;(重点)2.能够根据平行线的判定方法进行简单的推理.在同一个平面内,不相交的两条直线叫做平行线.记作a∥b.2.基本事实(平行公理):3.平行公理的推论:也就是说:如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.1.平行线定义:经过直线外一点,有且只有一条直线与这条直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如何用直尺和三角板过直线AB外一点P做AB的平行线CD.在用直尺和三角尺画平行线的过程中,直尺和三角尺分别起着什么样的作用?可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2相等的∠1,而∠2和∠1正是直线AB,CD被直线EF截得的同位角,这说明,如果同位角相等,那么AB∥CD.在用直尺和三角尺画平行线的过程中,直尺和三角尺分别起着什么样的作用?判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

简单说成:同位角相等,两直线平行.∵∠1=∠2∴AB∥CD如图,你能说出木工用图中的角尺画平行线的道理吗?∵∠BEF=∠ECD∴

CD∥EF(同位角相等,两直线平行)两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等,可以判定两条直线平行,那么,能否利用内错角,或同旁内角来判定两直线平行呢?(1)内错角满足什么关系时?两直线会平行?(2)同旁内角满足什么关系时?两直线会平行?如图,由3=2,可推出a∥b吗?解:

a∥b

.∵

3=2(已知)

1=3(对顶角相等)∴1=2(等量代换)∴

a∥b(同位角相等,两直线平行)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简单说成:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD如图,由2+4=180°,可推出a∥b吗?解:

a∥b

.∵

2+4=180°(已知)

1+4=180°(邻补角定义)∴1=2(同角的补角相等)∴

a∥b(同位角相等,两直线平行)还有其他的方法吗?如图,由2+4=180°,可推出a∥b吗?解:

a∥b

.∵

2+4=180°(已知)

3+4=180°(邻补角定义)∴2=3(同角的补角相等)∴

a∥b(内错角相等,两直线平行)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

简单说成:同旁内角互补,两直线平行.∵∠1+∠2=180°∴AB∥CD遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用“同位角相等,两直线平行”得到了“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.因此,在解题的过程中,可以用这种思路去分析实际问题,从而解决问题.同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.例1.如图,若∠1=∠2,则()A.a//b

B.c//d

C.a//b或c//d

D.以上都不正确用同位角判定两直线平行重点3对顶角是“桥梁”解析:如图,∠1=∠3(对顶角相等)∠1=∠2(已知)∴∠3=∠2(等量代换)∴c//d(同位角相等,两直线平行).B1.如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB//CD的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°2.如图,若∠1=∠2,则_____//_____;若∠2=∠3,则_____//_____.CABDEBCEF3.如图,已知∠B=30°,∠ADC=60°,DE平分∠ADC.试说明:DE//BC.

用内错角判定两直线平行重点例2.如图,AB与CD相交于点O,∠C=∠AOC,∠D=∠BOD,那么AC与BD平行吗?请说明理由.对顶角是“桥梁”用内错角判定两直线平行重点例2.如图,AB与CD相交于点O,∠C=∠AOC,∠D=∠BOD,那么AC与BD平行吗?请说明理由.对顶角是“桥梁”解:AC//BD.理由如下:∵∠C=∠AOC,∠D=∠BOD(已知),∠AOC=∠BOD(对顶角相等)∴∠C=∠D(等量代换)∴AC//BD(内错角相等,两直线平行).1.如图,能判定EB//AC的条件是()A.∠C=∠1B.∠A=∠2C.∠C=∠3D.∠A=∠12.如图,将两块含30°角的直角三角尺的最长边靠在一起滑动,可知直角边AB//CD,依据是________________________.D内错角相等,两直线平行3.如图,在三角形ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.试说明:DE//BC.解:∵CD⊥AB(已知),∴∠1+∠EDC=90°(垂直的定义)∵∠1+∠2=90°(已知),∴∠EDC=∠2(同角的余角相等),∴DE//BC(内错角相等,两直线平行).用同旁内角判定两直线平行重点例3.如图,∠ACB=90°,∠A=35°,∠BCD=55°.试说明:AB//CD.解:∵∠ACB=90°,∠BCD=55°(已知),∴∠ACD=∠ACB+∠BCD=90°+55°=145°∴∠A=35°(已知),∴∠A+∠ACD=35°+145°=180°,∴AB//CD(同旁内角互补,两直线平行).1.如图,下列条件能判定直线l1//l2的是()∠1=∠2B.∠1+∠3=180°C.∠4=∠5D.∠3=∠52.如图,∠1=∠2=60°,ED平分∠BEF,AB与CD平行吗?请说明理由.B解:AB//CD.理由如下:∵ED平分∠BEF,∠1=∠2=60°(已知),∴∠BEF=2∠2=120°(角平分线的定义).∴∠1+∠BEF=60°+120°=180°,∴AB//CD(同旁内角互补,两直线平行).平行线的判定重点例4.如图,已知AC,BC分别是∠BAD,∠ABE的平分线,且∠1+∠2=90°.试说明:AD//BE.解:∵AC,BC分别是∠BAD,∠ABE的平分线,∴∠BAD=2∠1,∠ABE=2∠2.∵∠1+∠2=90°,∴∠BAD+∠ABE=2(∠1+∠2)=180°∴AD//BE.1.如图,以下说法错误的是()A.若∠EAD=∠B,则AD//BCB.若∠EAD+∠D=180°,则AB//CDC.若∠CAD=∠BCA,则AD//BCD.若∠D=∠EAD,则AB//CDB2.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,CF与BD平行吗?请说明理由.解:CF∥BD,理由如下:∵BD⊥BE,∴∠DBE=90°,∴∠1+∠2=180°-∠DBE=90°∴∠1+∠C=90°,∴∠2=∠C.∴CF//BD(同位角相等,两直线平行).综合运用平行线的判定方法进行推理难点例5.如图,AB⊥BD于点B,CD⊥BD于点D,∠1=∠2,CD与EF平行吗?为什么?综合运用平行线的判定方法进行推理难点例5.如图,AB⊥BD于点B,CD⊥BD于点D,∠1=∠2,CD与EF平行吗?为什么?解:CD//EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°∴∠B+∠D=180°∴AB//CD(同旁内角互补,两直线平行)∵∠1=∠2,∴AB//EF(同位角相等,两直线平行)∴CD//EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).1.如图是一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.解:OA//BC,AC//OB.理由如下:∵∠1=∠2=50°,∴OA//BC(内错角相B等,两直线平行)∵∠3=130°,∴∠2+∠3=180°.∴AC//OB(同旁内角互补,两直线平行)2.如图,已知∠DCF=∠A,∠E+∠EBG=180°,CD与EF平行吗?为什么?解:CD//EF.理由如下:∵∠DCF=∠A,∴CD//AB(同位角相等,两直线平行)∵∠E+∠EBG=180°,∴EF//AB(同旁内角互补,两直线平行),∴CD//EF(如果两条直线都与笫三条直线平行,那么这两条直线也互相平行).添加条件,判定平行难点例6.如图,在应用∠1=∠2的条件下,再添加什么条件可使AB//CD成立?根据你添加的条件说明AB//CD成立的理由.注意∠1和∠2不是同位角.分析:观察图形可知,要使AB//CD成立,可以找同位角相等,也可以找同旁内角互补.添加条件,判定平行难点例6.如图,在应用∠1=∠2的条件下,再添加什么条件可使AB//CD成立?根据你添加的条件说明AB//CD成立的理由.解:可以添加以下任意一个条件:①∠MBE=∠MDF

;②∠EBN=∠FDN;③∠EBD+∠FDB=180°.以添加∠MBE=∠MDF为例说明AB//CD成立的理由:∵∠ABM=∠MBE-∠1,∠CDM=∠MDF-∠2,且∠MBE=∠MDF,∠1=∠2,∴∠ABM=∠CDM∴AB//CD(同位角相等,两直线平行).1.如图,点E在BC延长线上,下列条件中,不能推断AB//CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°2.如图,BE平分∠ABC,请你添加一个条件:____________________________________________________,使DE//BC.A∠EBC=∠DEB或∠ADE=∠ABC或∠ABE=∠DEB等3.如图,已知GM,HN分别平分∠BGE和∠DHF,当∠1与∠2具备怎样的关系时,AB//CD?请说明理由.解:当∠1+∠2=90°时,AB//CD.理由如下:∵GM,HN分别平分∠BGE和∠DHF,∴∠BGE=2∠1,∠DHF=2∠2∴∠BGE+∠DHF=2(∠1+∠2)∵∠1+∠2=90°,∴∠BGE+∠DHF=2×90°=180°∵∠BGE+∠BGF=180°,∴∠BGF=∠DHF∴AB//CD(同位角相等,两直线平行).平行线判定的实际应用难点例7.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的方向可能是()A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论