陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析_第1页
陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析_第2页
陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析_第3页
陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析_第4页
陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省咸阳市泾阳县树人中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设X是一个离散型随机变量,其分布列如图,则q等于()x﹣10

1P

0.51﹣2q

q2A.1 B.1± C.1﹣ D.1+参考答案:C【考点】离散型随机变量及其分布列.【专题】计算题.【分析】由离散型随机变量的分布列的性质,X其每个值的概率都在[0,1]之间,且概率之和为1,得到关于q的不等式组,求解即可.【解答】解:由分布列的性质得;?∴q=1﹣;.故选C【点评】本题考查离散型随机变量的分布列的性质及应用,属基本运算的考查.2.当时,函数的值域是()

A.

B.

C.

D.参考答案:C3.△ABC中,A=45°,B=60°,a=10,则b等于()A. B. C. D.参考答案:D【考点】正弦定理.【分析】根据正弦定理的式子将题中的数据代入,得,解之即可得到边b的大小.【解答】解:∵△ABC中,A=45°,B=60°,a=10,∴由正弦定理,得解之可得b==故选:D4.在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣ B. C.﹣ D.参考答案:D【考点】正弦定理.【分析】根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.【点评】正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.5.用数学归纳法证明:时,在第二步证明从到成立时,左边增加的项数是(

)A. B. C. D.1参考答案:A【分析】先求出n=k+1时左边最后的一项,再求左边增加的项数.【详解】n=k+1时左边最后的一项为,n=k时左边最后一项为,所以左边增加的项数为.故选:A【点睛】本题主要考查数学归纳法,意在考查学生对该知识的理解掌握水平.6.若关于x的一元二次方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,则实数a的取值范围是()A.a<﹣1 B.a>1 C.﹣1<a<1 D.a>2或a<﹣2参考答案:C【考点】一元二次方程的根的分布与系数的关系.【分析】由题意设f(x)=x2+ax﹣2,由条件、函数与方程的关系、一元二次函数的图象列出不等式,求出实数a的取值范围.【解答】解:由题意设f(x)=x2+ax﹣2,∵方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,∴,则,解得﹣1<a<1,故选:C.7.已知变量x,y满足约束条件则的最大值为()A.1 B.2 C.3 D.4参考答案:B画出二元一次不等式所示的可行域,目标函数为截距型,,可知截距越大值越大,根据图象得出最优解为,则的最大值为2,选B.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式转化为(或),“”取下方,“”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.8.下列命中,正确的是()A.||=||=

B.||>||>C.=∥

D.||=0=0参考答案:C9.曲线在点(-1,-3)处的切线方程是(

)A.

B.

C.

D.

参考答案:D略10.从一堆苹果中任取10只,称得它们的质量如下(单位:克)12512012210513011411695120134,则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3 C.0.4 D.0.5参考答案:C【考点】B7:频率分布表.【分析】从所给的十个数字中找出落在所要求的范围中的数字,共有4个,利用这个频数除以样本容量,得到要求的频率.【解答】解:∵在12512012210513011411695120134十个数字中,样本数据落在[114.5,124.5)内的有116,120,120,122共有四个,∴样本数据落在[114.5,124.5)内的频率为=0.4,故选C【点评】本题考查频率分布表,频数、频率和样本容量三者之间的关系是知二求一,这种问题会出现在选择和填空中,有的省份也会以大题的形式出现,把它融于统计问题中.二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,sinB+cosB=,则角A的大小为________.参考答案:12.化简

.参考答案:(展开式实部)(展开式实部).

13.已知过抛物线的焦点且斜率为的直线交抛物线于两点,,则抛物线的方程为_____________.参考答案:略14.某校从6名教师中选派3名教师去完成3项不同的工作,每人完成一项,每项工作由1人完成,其中甲和丙只能同去或同不去,则不同的选派方案共有_____种.参考答案:48【分析】先选人后分配,选人分有甲丙和没有甲丙2种情况,然后选出的3人全排列,两步的结果相乘可得解.【详解】根据题意,可以分两步完成选派:①先从6名教师中选出3名老师,需分2种情况进行讨论.1.甲和丙同去,有种不同选法;2.甲和丙同不去,有种不同选法,所以不同的选法有种.②将选出的3名老师全排列,对应3项不同的工作,有种情况.根据分步计数原理得不同的选派方案共有种.【点睛】本题主要考查排列组合的综合题,先选人后分配是解决本题的关键.15.命题p“?x∈R,sinx≤1”的否定是.参考答案:?x∈R,sinx>1【考点】命题的否定.【专题】综合题.【分析】直接把语句进行否定即可,注意否定时?对应?,≤对应>.【解答】解:根据题意我们直接对语句进行否定命题p“?x∈R,sinx≤1”的否定是:?x∈R,sinx>1.故答案为:?x∈R,sinx>1.【点评】本题考查了命题的否定,注意一些否定符号和词语的对应.16.对于回归方程y=4.75x+2.57,当x=28时,y的估计值是___________.参考答案:135.57∵回归方程y=4.75x+2.57,∴当x=28时,y的估计值是4.75×28+2.57=135.57.故答案为:135.57.17.若复数z=m2+m﹣2+(m2﹣m﹣2)i为实数,则实数m的值为.参考答案:2或﹣1【考点】复数的基本概念.【分析】由虚部为0求解关于m的一元二次方程得答案.【解答】解:∵复数z=m2+m﹣2+(m2﹣m﹣2)i为实数,∴m2﹣m﹣2=0,解得:m=2或﹣1.故答案为:2或﹣1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆5x2+9y2=45,椭圆的右焦点为F,(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦AB的中点P的轨迹方程.参考答案:【考点】椭圆的简单性质.【分析】椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),直线方程与椭圆方程联立可得根与系数的关系,利用弦长公式:|AB|=即可得出.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.把点A,B的坐标代入椭圆方程,两式相减可得k,再利用点斜式即可得出.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,把点A,B的坐标代入椭圆方程,两式相减即可得出.【解答】解:椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),联立,消去y得14x2﹣36x﹣9=0,∴,,∴.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.联立,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,∴,∴5+9k=0,即.∴l方程为y﹣1=(x﹣1)即5x+9y﹣14=0.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,,,整理得:5x2+9y2﹣10x=0,AB中点的轨迹方程为5x2+9y2﹣10x=0.19.计算:,;所以;又计算:,,;所以,.(1)分析以上结论,试写出一个一般性的命题;(2)判断该命题的真假。若为真,请用分析法给出证明;若为假,请说明理由.参考答案:(1);(2)真命题【分析】(1)根据所给结论,可写出一个一般性的命题。(2)利用综合法证明命题是一个真命题。【详解】(1)一般性的命题:是正整数,则(2)命题是真命题。因为因为所以.【点睛】本题考查简易逻辑,推理和证明,属于一般题。20.已知函数f(x)=lnx+x2.(Ⅰ)求函数h(x)=f(x)﹣3x的极值;(Ⅱ)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围.参考答案:【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(Ⅰ)由已知得到h(x),求其导函数,解得导函数的零点,由导函数的零点对定义域分段,求得函数的单调区间,进一步求得极值;(Ⅱ)由函数g(x)=f(x)﹣ax在定义域内为增函数,可得g′(x)≥0(x>0)恒成立,分离参数a,利用基本不等式求得最值得答案.【解答】解:(Ⅰ)由已知,得h(x)=f(x)﹣3x=lnx+x2﹣3x,(x>0),令=0,得x=或x=1,∴当x∈(0,)∪(1,+∞)时,h′(x)>0,当x∈()时,h′(x)<0,∴h(x)在(0,),(1,+∞)上为增函数,在()上为减函数.∴h(x)极小值=h(1)=﹣2,;(Ⅱ)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)=,由题意,知g′(x)≥0(x>0)恒成立,即a≤.∵x>0时,2x+,当且仅当x=时等号成立.故,∴a.21.(1)解不等式x(9—x)>0,w.w.w.k.s.5.u.c.o.m

(2)解关于x的不等式x(1—ax)>0(a∈R)

参考答案:解析:(1)0<x<9(4分)(2)a=0时,

其解集为{x|x>0}a<0时,不等式化为,其解集为{x|x<或x>0}a>0时,不等式化为,其解集为{x|<x<0}对a分类正确,即得3分,a=0时得1分,其它2分22.如图,三棱锥P﹣ABC中,△ABC为等腰直角三角形,AB=BC=2,PA=PB=PC=.(1)求证:平面PAC⊥平面ABC;(2)求平面PBC和平面ABC夹角的正切值.参考答案:【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)设O是AC的中点,连接PO,BO,推导出PO⊥AC,PO⊥OB,从而PO⊥平面ABC,由此能证明平面PAC⊥平面ABC.(2)设H是BC的中点,连接OH,PH,则∠PHO为平面PBC和平面ABC的夹角,由此能求出平面PBC和平面ABC夹角的正切值.【解答】(本小题满分17分)证明:(1)如图,设O是AC的中点,连接PO,BO.∵△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论