版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省张家口市怀安第一中学2022-2023学年高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设直线关于原点对称的直线为,若与椭圆的交点为
A、B,点P为椭圆上的动点,则使△PAB的面积为的点P的个数为(A)1
(B)4
(C)3
(D)2参考答案:D2.圆的参数方程为,(为参数,),若Q(-2,2)是圆上一点,则对应的参数的值是()A. B. C. D.参考答案:B【分析】将点坐标代入圆参数方程,解得参数即可.【详解】因为Q(-2,2)是圆上一点,所以,,因为,所以,选B.【点睛】本题考查圆的参数方程,考查基本求解能力.属于基础题.3.设,,且,夹角,则
(A)
(B)
(C)
(D)参考答案:【知识点】向量的模、向量的数量积【答案解析】A解析:解:,所以选A.【思路点拨】一般求向量的模经常利用性质:向量的平方等于其模的平方,进行转化求值.4.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理(
)A.小前提错 B.结论错 C.正确 D.大前提错参考答案:C试题分析:根据三段论推理可知,只要大前提和小前提是正确的,则得到的结论也是正确的,本题中大前提“所有9的倍数都是3的倍数”是正确,小前提“某奇数是9的倍数”也是正确的,所以得到的结论“该奇数是3的倍数”也是正确,故选C.考点:演绎推理.【方法点晴】本题主要考查了推理中的演绎推理,其中解答中使用三段论推理,对于三段论推理中,只有大前提(基本的公理、定理或概念、定义)是真确的,小前提是大前提的一部分(即小前提要蕴含在大前提之中)是正确的,则推理得到的命题的结论就是正确的,解答的关键是明确三段论推理的基本概念和推理的结构是解答的关键,属于基础题.5.在椭圆内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|的值最小,则这一最小值是(
)A.
B.
C.3
D.4参考答案:C6.已知,,,…,若(a,b),则(
)A、a=5,
b=24
B、a=6,
b=24
C、a=6,
b=35
D、a=5,
b=35
参考答案:D略7.在一个袋子中装有分别标注数学1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是(
)A. B. C. D.参考答案:A8.某班级要从4名男生,2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14
B.24
C.28
D.48参考答案:A略9.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.
.
.
.参考答案:D10.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:=1,点A,B是它的两个焦点,当静止的小球放在点A处,从A点沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最长路程是()A.20 B.18 C.16 D.14参考答案:C【考点】椭圆的简单性质.【分析】根据椭圆的光学性质可知,当静止的小球放在点A处,从点A沿直线出发,射到左顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2(a﹣c);射到右顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2(a+c);小球从点A沿直线出发,经椭圆壁反弹到B点继续前行碰椭圆壁后回到A点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和4a,进而根据椭圆的定义可求得小球经过的最长路程.【解答】解:依题意可知=1中,a=4,b=3,c=,设A,B分别为左、右焦点,则当静止的小球放在点A处,从点A沿直线出发,射到左顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2(a﹣c)=2(2﹣);射到右顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2(a+c)=2(2+);小球经两次椭圆壁后反弹后回到A点,根据椭圆的性质可知所走的路程正好是4a=4×4=16,小球经过的最长路程16,故选C.二、填空题:本大题共7小题,每小题4分,共28分11.如图,直三棱柱ABC一A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为.参考答案:【考点】MK:点、线、面间的距离计算.【分析】以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出线段B1F的长.【解答】解:以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,由题意A1(1,0,0),B1(0,1,0),D(,0),C1(0,0,0),A(1,0,2),设F(0,1,t),0≤t≤2,=(,0),=(﹣1,1,﹣2),=(0,1,t),∵AB1⊥平面C1DF,∴,∴1﹣2t=0,解得t=.∴线段B1F的长为.故答案为:.12.函数在上是减函数,则实数的取值范围是
.参考答案:略13.已知P是直线上的动点,PA、PB是圆的切线,A、B是切点,C是圆心,则四边形PACB面积的最小值是_________.参考答案:略14.执行下图的程序框图,若输入的分别为0,1,2,则输出的=
;
参考答案:215.已知F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A、B两点,若,则|AB|=
参考答案:816.如图为的导函数的图象,则下列判断正确的是________.(填序号)①在内是增函数;②是的极小值点;③在内是减函数,在内是增函数;④是的极大值点.参考答案:②③【分析】根据导函数大于0,原函数单调递增,导函数小于0,原函数单调递减,由导函数的图象可判断①和③的正误;导函数图象与坐标轴的交点即为原函数可能的极值点,再根据该点左右区间的单调性即可判断出其是极大值还是极小值,进而可判断①与④的正误.【详解】①错,因上,在上,故在内是减函数,在内是增函数;②正确,因在上为负,,在上为正;③正确,因在内,故f(x)在内是减函数;在内,故在内为增函数,④错,,故不是极值点.所以本题答案为答案②③【点睛】本题主要考查了学生对利用导数求解函数的单调性与极值的掌握情况,涉及到的知识点有导数与极值的关系,导数的符号与函数单调性的关系,在解题的过程中,判断的符号是解题的关键.17.某程序框图如图所示,若输入的的值分别是3,4,5,则输出的值为
参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(4-4:坐标系与参数方程)在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求曲线C的直角坐标方程;(2)求曲线C上的直线距离最大的点的直角坐标.参考答案:解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.
19.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.参考答案:【考点】程序框图;古典概型及其概率计算公式;几何概型.【分析】(1)根据分层抽样可得,故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.【点评】本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键.20.(本小题满分10分)如图,在正ΔABC中,点D、E分别在边BC,
AC上,且,,AD,BE相交于点P.求证:(I)四点P、D、C、E共圆;
(II)AP⊥CP。参考答案:证明:(I)在中,由知:≌,………………2分即.所以四点共圆;………………5分(II)如图,连结.在中,,,由正弦定理知.………………8分由四点共圆知,,所以………………10分23.解:21.如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求二面角A-A1D-B的余弦值;(Ⅲ)求点C1到平面A1BD的距离.参考答案:解:(1)取BC中点O,连结AO.∵△ABC为正三角形,∴AO⊥BC.∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1.∴.∴∴,∴AB1平面A1BD.(2)设平面A1AD的法向量为.=(-1,1,-),=(0,2,0).∵,∴.∴二面角A-A1D-B的大小的余弦值为.(3)C1点到A1BD的距离为
22.设x,y都
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《生命早期营养状况》课件
- 急诊科护理质量安全
- 肺癌镇静病人的护理措施
- 肺炎克雷伯杆菌治疗
- 水口项目可行性研究报告
- 年产xxx理疗仪项目建议书
- 年产xx印刷机电气控制系统装置项目建议书
- 期末复习提纲课件2高中地理人教版(2019)必修一
- 2024年微波暗室设备项目投资申请报告代可行性研究报告
- 2024年自动化生产设备项目资金需求报告代可行性研究报告
- 施工现场临时用电安全监理检查表
- 不符合慢病证办理告知书
- GB/T 44230-2024政务信息系统基本要求
- 《数字媒体技术导论》全套教学课件
- 海南乐东黎族自治县事业单位定向公开招聘驻县部队随军家属工作人员5人(第1号)(高频重点复习提升训练)共500题附带答案详解
- GB/T 44257.1-2024电动土方机械用动力电池第1部分:安全要求
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- 浙教版劳动九年级项目四任务二《统筹规划与工作分配》教案
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 洗浴中心传染病病例防控措施
- 施氏十二字养生功防治颈椎病教程文件
评论
0/150
提交评论