版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20182019学年河北省衡水中学高三(下)一调数学试卷(理科)(4月份)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B.2 C. D.5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题一真一假.其中正确结论的个数为()A.1 B.2 C.3 D.【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图象可能是()A. B. C. D.【答案】B【解析】【分析】分析四个图像,从而判断函数的性质,利用排除法求解.【详解】由于函数的定义域为,且在上为连续函数,可排除A答案;由于,,,所以,可排除C答案;当时,,故排除D答案;故答案选B.【点睛】本题考查了函数的性质的判断与数形结合的思想方向的应用,属于中档题5.下列三图中的多边形均为正多边形,,是所在边的中点,双曲线均以图中的,为焦点,设图示①②③中的双曲线的离心率分别为,,、则,,的大小关系为()A B. C. D.【答案】D【解析】【分析】根据题设条件,分别建立恰当的平面直角坐标系,求出图示①②③中的双曲线的离心率,,,然后再判断,,的大小关系.【详解】①设等边三角形的边长为2,以底边为轴,以底边的垂直平分线为轴,建立平面直角坐标系,则双曲线的焦点为,且过点,,,到两个焦点,的距离分别是和,,,.②正方形的边长为,分别以两条对角线为轴和轴,建立平面直角坐标系,则双曲线的焦点坐标为和,且过点.点到两个焦点,的距离分别是和,,,.③设正六边形的边长为2,以所在直线为轴,以的垂直平分线为轴,建立平面直角坐标系,则双曲线的焦点为和,且过点,点到两个焦点和的距离分别为和2,,,,所以.故选:.【点睛】本题主要考查双曲线的离心率求解,掌握双曲线的定义、性质以及恰当地建立坐标系是正确解题的关键,属于常考题.6.如图所示的程序框图输出的结果是()A.2018 B. C.1009 D.【答案】C【解析】【分析】模拟执行题目中的程序框图,得出该程序运行后输出的值.【详解】解:执行如图所示的程序框图知,该程序运行后是计算并输出,当时,最后一次循环,此时输出,故选:C【点睛】本题考查由程序框图得到输出结果,属于基础题.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A.65 B. C. D.60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币,若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着,那么,没有相邻的两个人站起来的概率为()A. B. C. D.【答案】B【解析】【分析】根据题意没有相邻的两个人站起来包括两种情况:5人都不站起来,或由2人中间隔一人站起来,由概率公式可得答案.【详解】根据题意没有相邻的两个人站起来包括两种情况:5人都不站起来,或由2人中间隔一人站起来,故没有相邻的两个人站起来的概率为,故选B【点睛】本题考查概率的计算,考查分类讨论的思想,考查分析能力和计算能力,属于基础题.9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.【答案】D【解析】由抛物线定义得所以由得,因此所以,选D.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.2.若为抛物线上一点,由定义易得;若过焦点的弦AB的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.11.已知当时,,则以下判断正确的是()A. B.C. D.【答案】C【解析】【分析】先构造函数,得出函数的奇偶性和单调性求出,从而得出选项即可.【详解】记,为偶函数且在上单调递减,由,得到,即,∴,即.故选:C.【点睛】本题主要考查了利用函数的奇偶性和单调性比较大小的问题.属于较易题.12.若存在一个实数t,使得成立,则称t为函数的一个不动点.设函数(,e为自然对数的底数),定义在R上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数a的取值范围为()A. B. C. D.【答案】B【解析】【分析】构造函数,结合条件证明是奇函数,求函数的导数,研究函数的单调性,求出不等式的解,进而得到不动点的范围,结合函数单调性转化求解即可.【详解】∵∴令,∴,∴,即为奇函数,∵,且当时,,∴对恒成立,∵为奇函数,且定义域为,∴在R上单调递减,∵,∴,即,∴,即,∵为函数的一个不动点,∴,即在有解.∵,∴在R上单调递减.∴可,∴.故选:B.【点睛】本题主要考查函数与方程的应用,已知函数有零点求参数取值范围常用的方法和思路,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为_______.【答案】【解析】【详解】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,.故答案为.14.三棱锥中,,,,则该几何体外接球的表面积为_______________.【答案】【解析】三棱锥内接于长宽高为的长方体,所以该几何体外接球的直径为,表面积为15.已知在内,且,,则____.【答案】【解析】【分析】首先根据题意,画出相应的图形,利用题中所给的条件,列出相应的等量关系式,根据平面向量基本定理,得到对应的结果.【详解】如图,设BO与AC相交于D,则由,可得,设CO与AB相交于E,则由,可得,因B,O,D三点共线,故存在实数m,使,因C,O,E三点共线,故存在实数n,使得,所以,解得,,所以,,故答案是:.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,向量共线的条件,属于较难题目.16.设实数,若对任意的,关于的不等式恒成立,则的最小值为______.【答案】【解析】【分析】首先将不等式恒成立,转化为,利用导数研究函数的单调性,从而求得其最值,得到结果.【详解】实数,若对任意的,不等式恒成立,即为,设,所以,令,可得:,由指数函数与反比例函数在第一象限有且只有一个交点,可得:与的图象在第一象限有且只有一个交点,设交点为,当时,,单调递增;当时,,单调递减.令,可得:当时,满足方程;即在单调递增,因为,所以在上单调递增,所以当时,由可得:,,等号成立,所以,即的最小值为,故答案是:.【点睛】该题考查的是有关利用恒成立问题求参数的最值的问题,涉及到的知识点有利用导数研究不等式恒成立问题,属于较难题目.三、解答题.解答应写出文字说明、证明过程或演算步骤.17.已知数列的前项和满足,.(1)求数列的通项公式;(2)在数列的前100项中,是否存在两项,(,且),使得,,三项成等比数列?若存在,求出所有的,的取值;若不存在,请说明理由.【答案】(1)(2)见解析;【解析】【分析】(1)先根据等差数列定义求,再根据项与和的关系求;(2)根据条件化简关系式,再利用范围限制取法,即得正整数解.【详解】(1)因为,所以,所以,所以.当时,.又,所以.(2)若,,三项成等比数列,则,即,即.因为,所以,所以,所以.又为3的奇数倍,所以,验证得,,.【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的概念,通项公式的求解,数列项与和的关系,关于是否存在类问题的解法,属于简单题目.18.某企业为了解年广告费(单位:万元)对年销售额(单位:万元)的影响,对近4年的年广告费和年销售额的数据作了初步整理,得到下面的表格:年广告费/万元2345年销售额/万元26394954(1)用年广告费作解释变量,年销售额作预报变量,在所给坐标系中作出这些数据的散点图,并判断与哪一个更适合作为年销售额关于年广告费的回归方程类型(给出判断即可,不必说明理由).(2)根据(1)的判断结果及表中数据,建立关于的回归方程.(3)已知商品的年利润与,的关系为.根据(2)的结果,计算年广告费约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.【答案】(1)见解析;(2)(3)6.65万元【解析】【分析】(1)根据题中所给的数据画出散点图,可以发现点落在一条直线的周围,从而判断出更适合作为年销售额关于年广告费的回归方程类型;(2)根据数据,利用公式求得回归直线的方程;(3)根据题意,将相应量代换,求得结果.【详解】(1)散点图如图所示,故更适合作为年销售额关于年广告费的回归方程类型.(2),,则,,所以回归方程为.(3)由(2)可知年利润的预报值为,设,则,可得,故当,即(万元)时,年利润的预报值最大.【点睛】该题考查的是有关统计的问题,涉及到的知识点有回归类型的选取,散点图的绘制,回归直线的求解等,属于中档题目.19.如图①,在五边形中,,,,,将沿折起到的位置,得到如图②所示的四棱锥,为线段的中点,且平面.(1)求证:平面.(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)取的中点,连接,,又为的中点,得到四边形为平行四边形,从而应用线面平行的判定定理证得结果.(2),可得为直线与所成的角,可得,,设,则,,取的中点O,连接PO,过O作AB的平行线,可建立如图所示的空间直角坐标系Oxyz,设为平面PBD的法向量,则,利用,即可得出.【详解】(1)证明:取的中点,连接,.又为的中点,所以,.又,,所以,.则四边形为平行四边形,所以.因为平面,平面,所以平面.(2)解:因为平面,,所以平面,所以,.由,即及为的中点,可得为等边三角形,所以.又,所以,即.因为平面,平面,,所以平面.又平面,所以平面平面.因为,所以即为直线与所成角,所以,所以.设,则,.取的中点,连接,过作交于点,则,,两两垂直.以为坐标原点,,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图所示.则,,,,所以.所以,,.设平面的法向量为,则,令,则因为.所以直线与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,应用向量法求线面角的正弦值的问题,属于中档题目.20.如图①,在中,,的中点为,点在的延长线上,且.固定边,在平面内移动顶点,使得圆分别与边,的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴,为坐标原点建立平面直角坐标系,如图②所示.(1)求曲线的方程;(2)过点的直线与曲线交于不同的两点,,直线,分别交曲线于点,,设,,求的取值范围.【答案】(1)(2)【解析】【分析】(1)依题意得出,利用椭圆的定义,即可判定C点的轨迹,得到椭圆的方程;(2)设,,,得到,由,求得,当直线与轴不垂直时,设直线的方程为,代入椭圆方程,利用根与系数的关系,化简得,,设直线的方程为,代入椭圆方程并整理得,利用根与系数的关系,化简得,即可求解.【详解】(1)由题意得,,设动圆与边的延长线相切于点,与边相切于点,则,,,所以,所以点的轨迹是以,为焦点,长轴长为的椭圆,且挖去长轴的两个顶点,则曲线的方程为.(2)设,,,由题意得,则,.由,得,即.当直线与轴不垂直时,直线的方程为,即,代入椭圆的方程并整理得,则有,即,故.当直线与轴垂直时,点的横坐标为1,,显然成立.同理可得.设直线的方程为,代入椭圆的方程并整理得.由题意得,解得.又,所以.由,得,故的取值范围为.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点有利用椭圆的定义求点的轨迹方程,直线与椭圆的位置关系,向量共线的条件等,属于较难题目.21.已知函数有两个不同极值点.(1)求实数的取值范围;(2)设,讨论函数的零点个数.【答案】(Ⅰ)(Ⅱ)当时,有2个零点;当时,有1个零点;当时,没有零点.【解析】【分析】(Ⅰ)由题意,求得,令,得,设,转化为直线y=a与函数的图象有两个不同的交点,利用导数求得函数的单调性与最值,进而求解的取值范围;(Ⅱ)由(Ⅰ)可知,,且,求得函数的单调性和极值,分类讨论,即可确定函数的极值点的个数.【详解】(Ⅰ)由题意,求得,因为有两个不同的极值点,则有两个不同的零点.令,则,即.设,则直线y=a与函数的图象有两个不同的交点.因为,由,得lnx<0,即,所以在上单调递增,在上单调递减,从而.因为当时,;当时,;当时,,所以a的取值范围是.(Ⅱ)因为,为的两个极值点,则,为直线与曲线的两个交点的横坐标.由(Ⅰ)可知,,且,因为当或时,,即;当时,,即,则在,上单调递减,在上单调递增,所以的极小值点为,极大值点为.当时,因为,,,则,所以在区间内无零点.因为,,则①当,即时,.又,则,所以.此时在和内各有1个零点,且.②当,即时,,此时在内有1个零点,且.③当,即时,,此时在内无零点,且.综上分析,当时,有2个零点;当时,有1个零点;当时,没有零点.【点睛】本题主要考查导数在函数中的应用,以及函数的极值点个数的确定问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.[选修44:坐标系与参数方程]在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线,的公共点为,.(1)求直线的斜率;(2)若,分别为曲线,上的动点,当取最大值时,求四边形的面积.【答案】(Ⅰ)2;(Ⅱ).【解析】【分析】(Ⅰ)消去参数α得曲线C1的普通方程,将曲线C2化为直角坐标方程,两式作差得直线AB的方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 15883-3:2024 EN Washer-disinfectors - Part 3: Requirements and tests for washer-disinfectors employing thermal disinfection for human waste containers
- 劳动合同纠纷仲裁代理词撰写指南
- 美国专有技术转让合同案例
- 企业合同权益转让协议书案例
- 房地产代理销售合同书范文示例
- 工程项目管理合同的关键条款
- 代售协议书范例
- 店面临时租赁合同书
- 2024宽带接入电信服务协议范本
- 小产权住宅购买协议书
- 2024年消防月全员消防安全知识专题培训-附20起典型火灾案例
- 2025届高三化学一轮复习 第13讲 铁盐、亚铁盐及其转化 课件
- 【电商企业跨国并购的绩效探析案例:以阿里巴巴并购Lazada为例(论文)14000字】
- 恒牙临床解剖-上颌中切牙(牙体解剖学课件)
- 云南太阳能资源分析
- 2024智慧园区系统建设规范
- GB/T 44592-2024红树林生态保护修复技术规程
- 第5课 互联网接入 教学设计 2023-2024学年浙教版(2023)初中信息技术七年级上册
- 小学语文一年级上册课件第四单元01-10 ai ei ui
- 传感器技术-武汉大学
- GB/T 44413-2024城市轨道交通分类
评论
0/150
提交评论