江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含解析_第1页
江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含解析_第2页
江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含解析_第3页
江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含解析_第4页
江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州区值、梅岭中学2023-2024学年数学九年级第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在中,是边上的点,,则的长为()A. B. C. D.2.如图,点,,均在⊙上,当时,的度数是()A. B. C. D.3.下列抛物线中,与抛物线y=-3x2+1的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+24.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE5.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.6.对于反比例函数,下列说法正确的是A.图象经过点(1,﹣3) B.图象在第二、四象限C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小7.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)8.如图,一次函数分别与轴、轴交于点、,若sin,则的值为()A. B. C. D.9.如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是()A.①② B.①③ C.①②③ D.①②③④10.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足()A. B. C. D.11.如图是由几个大小相同的小正方体组成的立体图形的俯视图,则这个立体图形可能是下图中的()A. B. C. D.12.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º二、填空题(每题4分,共24分)13.如图,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,则BD=_____cm.14.如图,点是反比例函数的图象上一点,直线过点与轴交于点,与轴交于点.过点做轴于点,连接,若的面积为,则的面积为_______.15.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.16.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.17.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.18.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…三、解答题(共78分)19.(8分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x20.(8分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(l)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.21.(8分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.23.(10分)“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.24.(10分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x之间的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.25.(12分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.26.倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.

参考答案一、选择题(每题4分,共48分)1、C【分析】先利用比例性质得到AD:AB=3:4,再证明△ADE∽△ABC,然后利用相似比可计算出AC的长.【详解】解:解:∵AD=9,BD=3,

∴AD:AB=9:12=3:4,

∵DE∥BC,

∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用相似三角形的性质时主要利用相似比计算线段的长.2、A【分析】先利用等腰三角形的性质和三角形内角和计算出的度数,然后根据圆周角定理可得到的度数.【详解】,,,.故选A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、A【解析】由条件可设出抛物线的顶点式,再由已知可确定出其二次项系数,则可求得抛物线解析式.【详解】∵抛物线顶点坐标为(﹣1,1),∴可设抛物线解析式为y=a(x+1)1+1.∵与抛物线y=﹣3x1+1的形状、开口方向完全相同,∴a=﹣3,∴所求抛物线解析式为y=﹣3(x+1)1+1.故选A.【点睛】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)1+k中,顶点坐标为(h,k),对称轴为x=h.4、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;

B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.

C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.

所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.5、B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.6、D【解析】试题分析:根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析:A、∵反比例函数,∴当x=1时,y=3≠﹣3,故图象不经过点(1,﹣3),故此选项错误;B、∵k>0,∴图象在第一、三象限,故此选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故此选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故此选项正确.故选D.7、A【详解】解:∵线段AB的两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(-2,-3).故选A.8、D【分析】由解析式求得图象与x轴、y轴的交点坐标,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【详解】∵,∴当x=0时,y=-k,当y=0时,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故选:D.【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB,利用勾股定理求得OA的长是解题的关键.9、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF;连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.10、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵的直径是8∴的半径是4∵直线与有两个交点∴0≤d<4(注:当直线过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心到直线的距离的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.11、D【分析】由俯视图判断出组合的正方体的几何体的列数即可.【详解】根据给出的俯视图,这个立体图形的第一排至少有3个正方体,第二排有1个正方体.故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12、B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、1【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD.【详解】∵∠B=30°,∠ADC=10°,∴∠BAD=∠ADC﹣∠B=30°,∴AD=BD,∵∠C=90°,∴∠CAD=30°,∴BD=AC=2CD=1cm,故答案为:1.【点睛】本题考查30°直角三角形的性质、外交定理,关键在于熟练掌握基础知识并灵活运用.14、【分析】先由△BOC的面积得出①,再判断出△BOC∽△ADC,得出②,联立①②求出,即可得出结论.【详解】设点A的坐标为,

∴,

∵直线过点A并且与两坐标轴分别交于点B,C,

∴,∴,,

∵△BOC的面积是3,

∴,

∴,

∴①

∵AD⊥x轴,

∴OB∥AD,

∴△BOC∽△ADC,

∴,

∴,

∴②,

联立①②解得,(舍)或,

∴.故答案为:.【点睛】本题是反比例函数与几何的综合题,主要考查了坐标轴上点的特点,反比例函数上点的特点,相似三角形的判定和性质,得出是解本题的关键.15、4【分析】根据线段是线段和的比例中项,得出,将a,b的值代入即可求解.【详解】解:∵线段是线段和的比例中项,∴即又∵、的长度分别为2和8,∴∴c=4或c=-4(舍去)故答案为:4【点睛】本题考查了比例中项的概念,掌握基本概念,列出等量关系即可解答.16、1.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM.∴∠M=∠PBM.∴BP=PM.∴EP+BP=EP+PM=EM.∵CQ=CE,∴EQ=2CQ.由EF∥BC得,△MEQ∽△BCQ,∴.∴EM=2BC=2×6=1,即EP+BP=1.故答案为:1.【点睛】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.17、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【详解】解:如图,过O作OD⊥AB于C,交⊙O于D,

∵CD=4,OD=10,

∴OC=6,

又∵OB=10,

∴Rt△BCO中,BC=∴AB=2BC=1.

故答案是:1.【点睛】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.18、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.三、解答题(共78分)19、(1)x1=,x2=;(2)x1=1,x2=;(3)x1=,x2=2;(4)x1=,x2=【分析】(1)两边同时除以3,再用直接开平方法解得;(2)移项,方程左边可以提取公因式(x-1),利用因式分解法求解得;(3)先把方程化为两个完全平式的形式,再用因式分解法求出x的值即可.(4)方程整理为一般形式,计算出根的判别式的值大于0,代入求根公式即可求出解;【详解】解:(1)两边同时除以3得:(2x+1)2=36,开平方得:2x+1=±6,x1=,x2=;(2)移项得,3x(x-1)-2+2x=0,

因式分解得,(x-1)(3x+2)=0,

解得,x1=1,x2=;(3)因式分解得:(x-3)2=(5-2x)2,

移项,得(x-3)2-(5-2x)2=0,

因式分解得(x-3-5+2x)(x-3+5-2x)=0,

(3x-8)(-x+2)=0,

解得x1=,x2=2;(4)x(2x-4)=5-8x,

方程整理得:2x2+4x-5=0,

这里a=2,b=4,c=-5,

∵△=16+40=56,∴x=,则x1=,x2=.【点睛】本题考查的是解一元二次方程,熟知用直接开平方法、公式法及因式分解法解一元二次方程是解答此题的关键.20、(1)反比例函数解析式为y=,一次函数解析式为y=x+3;(2)(﹣6,0).【分析】(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC="2/5",解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标.【详解】解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD在,tan∠BOC=,即,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,∵S△BCE=S△BCO,∴CE=OC=3,∴OE=6,即E(﹣6,0).21、(1)乙平均数为8,方差为0.8;(2)乙.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.22、(1)50,360;(2).【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率23、(1)2400万件;(2)1【分析】(1)设该公司计划在线下销售量为x万件,由题意得关于x的一元一次不等式,求解即可;(2)以中旬销售总金额比上旬销售总金额提高了m%为等量关系,得关于m的一元二次方程,求解,并根据问题的实际意义作出取舍即可.【详解】(1)设该公司计划在线下销售量为x万件,则3000﹣x≥1%x解得:x≤2400答:该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣1m=0解得:m1=0(不合题意,舍去),m2=1∴m的值为1.【点睛】本题主要考查一元一次不等式和一元二次方程的实际应用,找到题目中的等量关系和不等量关系,是解题的关键.24、(1)y=-x2+3x;(2)当x=3时,y有最大值,为4.5.【解析】分析:(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论