




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市临川区2023-2024学年八上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.如图,若在象棋盘上建立直角坐标系,使“帅”位于点.“馬”位于点,则“兵”位于点()A. B.C. D.3.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为()A. B. C. D.4.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.35.若一组数据,0,2,4,的极差为7,则的值是().A. B.6 C.7 D.6或6.-的相反数是()A.- B.- C. D.7.如图,在正方形内,以为边作等边三角形,连接并延长交于,则下列结论不正确的是()A. B. C. D.8.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab29.在等边三角形中,分别是的中点,点是线段上的一个动点,当的长最小时,点的位置在()A.点处 B.的中点处 C.的重心处 D.点处10.将一副常规的三角尺按如图方式放置,则图中∠1的度数为()A.95° B.100° C.105° D.115°二、填空题(每小题3分,共24分)11.化简:_________.12.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.13.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.14.计算:=.15.分式有意义的条件是__________.16.如图,已知AB∥CF,E为DF的中点.若AB=13cm,CF=7cm,则BD=_____cm.17.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_____.18.分式与的最简公分母是____.三、解答题(共66分)19.(10分)在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积20.(6分)因式分解(1)(2)21.(6分)如图直线对应的函数表达式为,直线与轴交于点.直线:与轴交于点,且经过点,直线,交于点.(1)求点,点的坐标;(2)求直线对应的函数表达式;(3)求的面积;(4)利用函数图象写出关于,的二元一次方程组的解.22.(8分)如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:△ABC≌△CED.23.(8分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.24.(8分)(1)如图(a),平分,平分.①当时,求的度数.②猜想与有什么数量关系?并证明你的结论.(2)如图(b),平分外角,平分外角,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).25.(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26.(10分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形的三边关系逐项判断即得答案.【详解】解:A、因为3+4<8,所以3cm,4cm,8cm的三根小木棒不能摆成三角形,故本选项不符合题意;B、因为8+7=15,所以8cm,7cm,15cm的三根小木棒不能摆成三角形,故本选项不符合题意;C、因为13+12>20,所以13cm,12cm,20cm的三根小木棒能摆成三角形,故本选项符合题意;D、因为5+5<11,所以5cm,5cm,11cm的三根小木棒不能摆成三角形,故本选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系,属于基本题型,熟练掌握基本知识是解题的关键.2、C【解析】试题解析:如图,“兵”位于点(−3,1).故选C.3、C【分析】把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
在Rt△ACB′,所以它爬行的最短路程为13cm.
故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.4、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.5、D【详解】解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D6、D【解析】相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.【详解】根据相反数、绝对值的性质可知:-的相反数是.故选D.【点睛】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.7、D【分析】根据四边形ABCD是正方形,△EMC是等边三角形,得出∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,再计算角度即可;通过做辅助线MD,得出MA=MD,MD=MN,从而得出AM=MN.【详解】如图,连接DM,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠ADC=90°,∵△EMC是等边三角形,∴BM=BC=CM,∠EMC=∠MBC=∠MCB=60°,∴∠ABM=∠MCN=30°,∵BA=BM,MC=CD,∴∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,∴∠MAD=∠MDA=15°,故A正确;∴MA=MD,∴∠DMN=∠MAD+∠ADM=30°,∴∠CMN=∠CMD-∠DMN=45°,故B正确;∵∠MDN=∠AND=75°∴MD=MN∴AM=MN,故C正确;∵∠CMN=45°,∠MCN=30°,∴,故D错误,故选D.【点睛】本题考正方形的性质、等边三角形的性质等知识,灵活应用正方形以及等边三角形的性质,通过计算角度得出等腰三角形是关键.8、C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.9、C【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,当的长最小时,即PB+PE最小则此时点B、P、E在同一直线上时,又∵BE为中线,∴点P为△ABC的三条中线的交点,也就是△ABC的重心,故选:C.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.10、C【分析】根据题意求出∠BCO,再根据三角形的外角的性质计算即可.【详解】如图,由题意得:∠BCO=∠ACB﹣∠ACD=60°-45°=15°,∴∠1=∠B+∠BCO=90°+15°=105°.故选C.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答本题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据二次根式的性质化简即可求出结果.【详解】解:,故答案为:1.【点睛】本题主要考查了二次根式的性质,熟知是解题的关键.12、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,
∴∠BDC=90°-60°=30°,
∴BD=2BC=2×4=1,
∵∠C=90°,∠A=15°,
∴∠ABC=90°-15°=75°,
∴∠ABD=∠ABC-∠DBC=75°-60°=15°,
∴∠ABD=∠A,
∴AD=BD=1.
故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.13、或【分析】分∠A为顶角和底角两类进行讨论,计算出其他角的度数,根据特征值k的定义计算即可.【详解】当∠A为顶角时,等腰三角形的两底角为,∴特征值k=;当∠A为底角时,等腰三角形的顶角为,∴特征值k=.故答案为:或【点睛】本题考查了等腰三角形的分类,等腰三角形的分类讨论是解题中易错点.一般可以考虑从角或边两类进行讨论.14、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.15、x≠﹣1【分析】根据分式有意义,分母不等于零,列不等式求解即可.【详解】解:由题意得:x+1≠0,解得:x≠﹣1,故答案为:x≠﹣1【点睛】本题考查分式有意义的条件,解题的关键是从以下三方面透彻理解分式的概念:分式无意义时,分母为零;分式有意义时,分母不为零;分式的值为零时,分子为零且分母不为零.16、6【分析】先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=13cm即可求出BD的长.【详解】解:∵AB∥CF,∴∠ADE=∠EFC,∵E为DF的中点,∴DE=FE,在△ADE和△CFE中,∴△ADE≌△CFE(ASA),∴AD=CF=9cm,∵AB=13cm,∴BD=13﹣7=6cm.故答案为:6.【点睛】本题考查全等三角形的判定和性质,根据条件选择合适的判定定理是解题的关键.17、4n+1.【分析】观察图形可知,第一个黑色地面砖有六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.据此规律即可解答.【详解】解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+1.∴m与n的函数关系式是m=4n+1.故答案为:4n+1.【点睛】本题考查平面图形组合的规律,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第1个图案的基础上,多1个图案,多4个白色地面砖.18、【分析】由题意直接根据最简公分母的定义,即可得出答案.【详解】解:∵分式的分母,都是单项式,∴分式与的最简公分母是.故答案为:.【点睛】本题考查的是最简公分母,熟知当各分母都是单项式时,即有最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里是解答此题的关键.三、解答题(共66分)19、(1)∠COB=130°;(2)16.【分析】(1)利用角平分线的定义及三角形内角和即可得出答案;(2)过O作OD⊥BC于D点,连接AO,通过O为角平分线的交点,得出点O到三边的距离相等,利用特殊角的三角函数值求出距离,然后利用和周长即可得出答案.【详解】(1)解:∵BO、CO分别平分∠ABC和∠ACB∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,20°(2)过O作OD⊥BC于D点,连接AO∵O为角平分线的交点∴点O到三边的距离相等又∵∠ABC=60°,OB=4∴∠OBD=30°,OD=2即点O到三边的距离都等于2∴又∵△ABC的周长为16∴【点睛】本题主要考查角平分线的性质,掌握角平分线的性质是解题的关键.20、(1)x2y(x-y)2;(2)5(x-y)2(2b-a)【分析】(1)先提取公因式得,再将括号内的式子利用完全平方公式进行因式分解;(2)先将式子变形为,再提取公因式即可.【详解】解:(1)==(2)==5(x-y)2(2b-a)【点睛】此题考查因式分解,利用了提公因式法和完全平方公式法进行因式分解,解题关键是熟练掌握因式分解的概念及方法.21、(1)点D的坐标为(1,0),点C的坐标为(2,2);(2);(3)3;(4)【分析】(1)将y=0代入直线对应的函数表达式中即可求出点D的坐标,将点代入直线对应的函数表达式中即可求出点C的坐标;(2)根据图象可知点B的坐标,然后将点B和点C的坐标代入中,即可求出直线对应的函数表达式;(3)过点C作CE⊥x轴,先求出点A的坐标,然后根据三角形的面积公式求面积即可;(4)根据二元一次方程组的解和两个一次函数交点坐标关系即可得出结论.【详解】解:(1)将y=0代入中,解得x=1∴点D的坐标为(1,0)将点代入中,得解得:∴点C的坐标为(2,2);(2)由图象可知:点B的坐标为(3,1)将点B和点C的坐标代入中,得解得:∴直线对应的函数表达式为;(3)过点C作CE⊥x轴于E,将y=0代入中,解得x=4∴点A的坐标为(4,0)∵点D(1,0),点C(2,2)∴AD=4-1=3,CE=2∴S△ADC=;(4)∵直线,交于点∴关于,的二元一次方程组的解为.【点睛】此题考查的是一次函数的综合题,掌握用待定系数法求一次函数的解析式、求一次函数与坐标轴的交点坐标、求两个一次函数与坐标轴围成三角形的面积和二元一次方程组的解和两个一次函数交点坐标关系是解决此题的关键.22、见解析【分析】首先利用平行线的性质可得∠B=∠E,再利用SAS定理判定△ABC≌△CED即可.【详解】解:证明:∵AB∥ED,∴∠B=∠E,在△ABC和△CED中,,∴△ABC≌△CED(SAS).【点睛】本题主要考查了平行线的性质,全等三角形的判定与性质,是一道很简单的全等证明,只需证一次全等,无需添加辅助线,且全等的条件都很明显,关键是熟记全等三角形的判定与性质.23、4cm【分析】连接AD,先根据等腰三角形两底角相等求出∠B、∠C,根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,根据等腰三角形两底角相等可得∠C=∠CAD,再求出∠BAD,然后根据直角三角形30°角所对的直角边等于斜边的一半求解即可.【详解】解:连接AD.∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=×(180°-120°)=30°.∵DE是AC的垂直平分线,∴AD=CD,∴∠C=∠CAD=30°,∴∠BAD=∠BAC-∠CAD=120°-30°=90°.∵DE=1cm,DE⊥AC,∴CD=2DE=2cm,∴AD=2cm.在Rt△ABD中,BD=2AD=2×2=4cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线构造出直角三角形是解题的关键.24、(1)①120°;②;证明见解析;(2)不正确;【分析】(1)①根据角平分线的定义以及三角形的内角和定理计算即可;
②结论:∠D=90°+∠A.根据角平分线的定义以及三角形的内角和定理计算即可;(2)不正确.结论:∠D=90°-∠A.根据角平分线的定义以及三角形的内角和定理三角形的外角的性质计算即可.【详解】解:(1)①,,,,,;②结论:.理由:,,;(2)不正确.结论:.理由:,,,.【点睛】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代管理物业合同标准文本
- ups销售合同标准文本
- 信用调查合同标准文本
- 业务合作协议合同范例
- 上门训狗合同标准文本
- 两期合同样本
- 社交媒体运营与推广策略手册
- Linux操作系统微课版
- 制定重要活动的安保方案计划
- 小自考消费者心理分析试题及答案
- 妇科手术及围手术期处理课件
- 《放射防护知识培训》课件
- 2024年国家能源集团招聘笔试参考题库含答案解析
- 儿科重症肺炎个案护理查房
- 建筑消防安全中英文对照外文翻译文献
- 2023风电机组基础锚笼环技术规范
- 《劳动法案例分析》课件
- 2023天地伟业安防产品技术参数和检测报告
- 古代小说中的女性形象与性别角色演变
- 火龙罐联合耳穴压豆治疗失眠个案护理
- 鬼谷神掌 (静月山人整理)
评论
0/150
提交评论