




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省贵阳市修文县六桷乡六桷中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.两圆x2+y2﹣4x+2y+1=0与x2+y2+4x﹣4y﹣1=0的位置关系是()A.外离 B.外切 C.相交 D.内切参考答案:B【考点】圆与圆的位置关系及其判定.【分析】把第二个圆化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出圆心距d,根据d与R、r的大小比较发现,d=R+r,可得出两圆外切.【解答】解:由圆x2+y2﹣4x+2y+1=0,得(x﹣2)2+(y+1)2=4,得到圆心A(2,﹣1),半径R=2,由x2+y2+4x﹣4y﹣1=0变形得:(x+2)2+(y﹣2)2=9,可得圆心B(﹣2,2),半径r=3,∵两圆心距d=|AB|=5=2+3∴两圆外切.故选:B.【点评】此题考查了圆与圆的位置关系及其判定,涉及的知识有:圆的标准方程,两点间的距离公式,圆与圆位置关系可以由d,R及r三者的关系来判定,当0≤d<R﹣r时,两圆内含;当d=R﹣r时,两圆内切;当R﹣r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.2.已知等比数列{an}中,,公比,且满足,,则(
)A.8
B.
6
C.4
D.
2参考答案:D3.用秦九韶算法计算多项式当的值时,至多需要做乘法的次数与的值分别是(
)A.,
B.,
C.,
D.,
参考答案:A略4.如图是各棱长均为2的正三棱柱ABC—A1B1C1的直观图,则此三棱柱侧视图的面积为(
)A. B. C. D.4参考答案:B【分析】先由题意确定其侧视图为矩形,求出矩形的长和宽,即可得出结果.【详解】由题意可得,侧视图是个矩形,由已知,底面正三角形的边长为2,所以其高为,即侧视图的宽为,又三棱柱的高为2,即侧视图的长为2,所以三棱柱侧视图的面积为.故选B【点睛】本题主要考查几何体的三视图,熟记三棱柱的结构特征即可,属于常考题型.5.已知抛物线的焦点为,是上一点,,则(
)A.1
B.-1或1
C.2
D.-2或2参考答案:D抛物线的焦点为是C上一点,,由抛物线定义可得:,解得=2,可得=±2.故选:D.
6.复数的实部是:A.
2
B.
C.
2+
D.
0参考答案:D略7.,,动点满足,则点的轨迹方程是(A)
(B)(C)
(D)参考答案:B8.已知不等式组表示的平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖,则圆C的方程为(
)A.(x﹣1)2+(y﹣2)2=5 B.(x﹣2)2+(y﹣1)2=8 C.(x﹣4)2+(y﹣1)2=6 D.(x﹣2)2+(y﹣1)2=5参考答案:D【考点】二元一次不等式(组)与平面区域;圆的标准方程.【专题】转化思想;不等式的解法及应用;直线与圆.【分析】根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得【解答】解:由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆C的方程是(x﹣2)2+(y﹣1)2=5.故选:D【点评】本题主要考查了直线与圆的方程的应用.考查了数形结合的思想,转化和化归的思想.9.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是() A.B.C.D.参考答案:C【考点】直线的斜率. 【专题】计算题;转化思想;分析法;直线与圆. 【分析】直接利用直线倾斜角的范围求得其正切值的范围得答案. 【解答】解:∵60°<α≤135°, ∴tanα或tanα≤﹣1, 又α为直线l的倾斜角, ∴k∈(﹣∞,﹣1]∪(). 故选:C. 【点评】本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,是基础题. 10.已知函数有极大值和极小值,则实数a的取值范围是(
)A.-1<a<2
B.-3<a<6
C.a<-3或a>6
D.a<-1或a>2参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.若=,=,则=_________;参考答案:略12.如图,当抛物线形拱桥的拱顶距水面2米时,测得水面宽4米.若水面下降0.5米,则水面宽米.参考答案:【考点】抛物线的简单性质.【专题】计算题;应用题;数形结合;综合法;圆锥曲线的定义、性质与方程.【分析】可建立平面直角坐标系,设抛物线的方程为x2=2py,从而由题意知点(2,﹣2)在抛物线上,带入抛物线方程便可求出p=﹣1,这便得出抛物线方程为x2=﹣2y.而根据题意知点(x0,﹣2.5)在抛物线上,从而可以求出x0,从而水面宽度便为2|x0|,即得出水面宽度.【解答】解:建立如图所示平面直角坐标系:设抛物线方程为x2=2py;根据题意知,A(2,﹣2)在抛物线上;∴4=2p?(﹣2);∴p=﹣1;∴x2=﹣2y;设B(x0,﹣2.5)在抛物线上,则:;∴;∴水面下降0.5米,则水面宽为.故答案为:.【点评】考查通过建立平面直角坐标系,根据曲线上点的坐标求出曲线方程,利用曲线方程解决几何问题的方法,以及抛物线的标准方程,数形结合解题的方法.13.的值为___________;参考答案:略14.两平行直线的距离是
。参考答案:15.若已知,则的值为
.参考答案:1略16.若双曲线的渐近线方程为,则该双曲线的离心率为
▲
.参考答案:或
17.设有一个等边三角形网格,其中各个最小等边三角形的边长都是4cm,现用直径等于2cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C的中心在原点,焦点F1,F2在x轴上,离心率,且经过点.(1)求椭圆C的方程;(2)若直线l经过椭圆C的右焦点F2,且与椭圆C交于A,B两点,使得|F1A|,|AB|,|BF1|依次成等差数列,求直线l的方程.参考答案:【考点】椭圆的标准方程;等差数列的性质;直线与圆锥曲线的综合问题.【分析】(1)先设椭圆C的方程根据离心率和点M求得a和b,进而可得答案.(2)设直线l的方程为,代入(1)中所求的椭圆C的方程,消去y,设A(x1,y1),B(x2,y2),进而可得到x1+x2和x1?x2的表达式,根据F1A|+|BF1|=2|AB|求得k,再判断直线l⊥x轴时,直线方程不符合题意.最后可得答案.【解答】解:(1)设椭圆C的方程为,(其中a>b>0)由题意得,且,解得a2=4,b2=2,c2=2,所以椭圆C的方程为.(2)设直线l的方程为,代入椭圆C的方程,化简得,设A(x1,y1),B(x2,y2),则,,由于|F1A|,|AB|,|BF1|依次成等差数列,则|F1A|+|BF1|=2|AB|.而|F1A|+|AB|+|BF1|=4a=8,所以.=,解得k=±1;当直线l⊥x轴时,,代入得y=±1,|AB|=2,不合题意.所以,直线l的方程为.19.(本小题满分10分)选修4—5:不等式选讲.已知函数.(I)若不等式的解集为,求实数a的值;高考资源网(II)在(I)的条件下,若存在实数使成立,求实数的取值范围.参考答案:(Ⅰ)由得,∴,即,∴,∴。┈┈┈┈5分(Ⅱ)由(Ⅰ)知,令,则,∴的最小值为4,故实数的取值范围是。┈┈┈┈┈10分20.如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为4的菱形,且,是的中点,过的平面交于,是的中点。(1)求证:;(2)求证:为的中点;(3)求四棱锥的体积。
参考答案:(1)∵ABCD为边长为2的菱形,且∠BAD=60°,E为AD中点.∴BE⊥AD又∵△PAD为正△
∴PE⊥AD∵PE∩BE=E
∴AD⊥平面PBE∵AD//BC
∴BC⊥平面PBE
(2)∵AD//BC,BC平面PBC,AD平面PBC
∴AD//平面PBC又∵平面ADN∩平面PBC=MN
∴AD//MN
∴MN//BC
∵N为PB中点
∴M为PC中点
(3)V=621.指出下列语句的错误,并改正:(1)A=B=50(2)x=1,y=2,z=3(3)INPUT
“Howoldareyou”
x(4)INPUT
,x(5)PRINT
A+B=;C(6)PRINT
Good-bye!参考答案:(1)变量不能够连续赋值.可以改为A=50B=A(2)一个赋值语句只能给一个变量赋值.可以改为x=1y=2z=3(3)INPUT语句“提示内容”后面有个分号(;).改为INPUT
“Howol
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动办公设备贷款协议
- 《网络广告互动性研究》课件
- 双语列车长车票的发售规定课件
- 双语列车长火灾爆炸事故的应急处理课件
- 中医与传统文化课件
- 家居设计合同范本
- 版个人房产转让合同样本
- 四位创始股东合作合同书
- 【课件】电荷+课件+-高二上学期物理人教版(2019)必修第三册+
- 景德镇艺术职业大学《中医养生与康复学》2023-2024学年第二学期期末试卷
- 《大数据导论(第2版)》全套教学课件
- 新疆能源(集团)有限责任公司招聘笔试题库2024
- AECOPD合并呼吸衰竭护理查房
- 2024年全国高中数学联赛北京赛区预赛一试试题(解析版)
- 2025届新高考化学热点精准复习 高三化学复习备考的方法与策略
- 新高考II卷01(含听力)2024年高考英语一轮复习测试卷(考试版)
- 西游记阅读指导课评课
- 2024年郑州信息科技职业学院单招职业适应性测试题库学生专用
- 2023-2024学年安徽省合肥八中高一(下)期中数学试卷(含解析)
- CHT 9008.2-2010 基础地理信息数字成果1:500 1:1 000 1:2 000数字高程模型
- 测量学-第五版-配套课件
评论
0/150
提交评论