版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省锦州黑山县2024届八年级数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.102.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A. B. C. D.3.已知一次函数,函数值随自变量的增大而减小,那么的取值范围是()A. B. C. D.4.若关于的方程的解为正数,则的取值范围是()A. B. C.且 D.且5.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地6.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则 B.运用平方差公式C.运用单项式乘多项式法则 D.运用完全平方公式7.的平方根是()A.±16 B. C.±2 D.8.下列各式中,正确的是()A.3>2 B.a3•a2=a6 C.(b+2a)(2a-b)=b2-4a2 D.5m+2m=7m29.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形10.一次函数的图象经过点,且随的增大而减小,则的值是().A.2 B. C.0 D.11.下列运算正确的是(A. B. C. D.12.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1二、填空题(每题4分,共24分)13.如图,已知△ABC为等边三角形,BD为中线,延长BC至点E,使CE=CD=1,连接DE,则BE=________.14.9的平方根是_________.15.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为_________.16.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.17.计算=.18.如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是____.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)P为x轴上一动点,当AP+CP有最小值时,求这个最小值.20.(8分)已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b的值.21.(8分)某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x(人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少.22.(10分)小江利用计算器计算15×15,1×1,…,95×95,有如下发现:15×15=21=1×2×100+1,1×1=61=2×3×100+135×35=121=3×4×100+1,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+1.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.23.(10分)如图,四边形ABCD与四边形DEFG都是正方形,设AB=a,DG=b(a>b).(1)写出AG的长度(用含字母a、b的式子表示);(2)观察图形,请你用两种不同的方法表示图形中阴影部分的面积,此时,你能获得一个因式分解公式,请将这个公式写出来;(3)如果正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2,试利用(2)中的公式,求a、b的值.24.(10分)甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.25.(12分)解方程或求值(1)解分式方程:(2)先化简,再求值,其中26.崂山区某班全体同学参加了为一名因工受伤女教师捐款的活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款金额的众数;(3)该班平均每人捐款多少元?
参考答案一、选择题(每题4分,共48分)1、D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=BA•CD=×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+BA=8+×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.2、A【分析】根据科学记数法绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由科学记数法的表示可知,,故选:A.【点睛】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.3、C【解析】解:由题意得:1+2m<0,解得:m<.故选C.4、D【详解】去分母得,m﹣1=2x﹣2,解得,x=,∵方程的解是正数,∴>0,解这个不等式得,m>﹣1,∵m=1时不符合题意,∴m≠1,则m的取值范围是m>﹣1且m≠1.故选D.【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.要注意分母不能为0,这个条件经常忘掉.5、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.6、B【解析】直接利用平方差公式计算得出答案.【详解】选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【点睛】此题主要考查了多项式乘法,正确应用公式是解题关键.7、B【分析】先计算,再根据平方根的定义即可得到结论.【详解】解:∵,∴2的平方根是,故选:B.【点睛】本题考查平方根的定义,注意本题求的是的平方根,即2的平方根.8、A【分析】比较两个二次根式的大小可判别A,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B、C、D的正误.【详解】A、,,∵,∴,故该选项正确;B、•,故该选项错误;C、,故该选项错误;D、,故该选项错误;故选:A.【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.9、C【分析】此题可以利用多边形的外角和和内角和定理求解.【详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【点睛】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.10、D【分析】将点代入一次函数中,可得,随的增大而减小,可得,计算求解即可.【详解】∵一次函数的图象经过点,∴,解得:,∵随的增大而减小,∴<0,解得:<1,∴,故选:D.【点睛】本题考查了一次函数图象与系数的关系,明确:①k>0,y随x的增大而增大;当k<0时,y随x的增大而减小.11、C【分析】分别根据合并同类项的法则、积的乘方运算法则、幂的乘方运算法则和同底数幂的除法法则逐项计算即可.【详解】解:A、,所以本选项运算错误,不符合题意;B、,所以本选项运算错误,不符合题意;C、,所以本选项运算正确,符合题意;D、,所以本选项运算错误,不符合题意.故选:C.【点睛】本题考查的是合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题关键.12、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE的长.【详解】∵△ABC为等边三角形,
∴AB=BC=AC,
∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=1.故答案为:1.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.14、±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、(-3,-2).【解析】试题解析:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.16、4【分析】根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,根据平角的义即可得出∠NPM=∠PMN=∠MNP,即可证△PMN是等边三角形:根据全等三角形的性质得到PA=BM=CN,PB=MC=AN,从而求得MC+NC=AC=12cm,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC=NC,即司得MC的长.【详解】∵△ABC是等边三角形,∴∠A=∠B=∠C.∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,∵∠C=60°,∴∠MNC=30°,∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.故答案为:4cm【点睛】本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM=∠PMN=∠MNP是本题的关键.17、.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:.18、.【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1=4+2,x2=4﹣2,∵BE=2,∴AB>2,∴AB=x=4+2.故答案为:4+2.【点睛】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.三、解答题(共78分)19、(1)作图见解析;(2)作图见解析;(3)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于原点对称点的性质得出对应点位置进而得出答案;(3)直接利用轴对称求最短路线得出P点位置,再利用勾股定理得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:P点即为所求,当AP+CP有最小值时,这个最小值为:=.【点睛】本题考查图形的平移、对称以及最值的问题,难度不大.解题的关键是掌握:点的左右平移实际上就横坐标在改变;点的上下平移就是点的纵坐标在改变;对于轴对称-最短路线问题,解题的关键是找出一点关于对称轴的对称点,连接另一点和对称点,确定出最短路线.20、(1)±4;(2)5【解析】(1)分别求出一次函数y=2x+b与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b求出b的值.【详解】解:(1)令x=0代入y=2x+b,∴y=b,令y=0代入y=2x+b,∴x=-,∵y=2x+b的图象与坐标轴所围成的图象的面积等于4,∴×|b|×|-|=4,∴b2=16,∴b=±4;(2)联立,解得:,把(-1,3)代入y=2x+b,∴3=-2+b,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b的值,本题属于基础题型.21、(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买10张票时,两种优惠方案付款一样多;3≤x<10时,y1<y2,选方案一较划算;当x>10时,y1>y2,选方案二较划算.【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去3人后的学生票金额;优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y关于x的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】解:(1)按优惠方案一可得y1=25×3+(x-3)×15=15x+30(x≥3),按优惠方案二可得y2=(15x+25×3)×80%=12x+60(x≥3);(2)∵y1-y2=3x-30(x≥3),①当y1-y2=0时,得3x-30=0,解得x=10,∴当购买10张票时,两种优惠方案付款一样多;②当y1-y2<0时,得3x-30<0,解得x<10,∴3≤x<10时,y1<y2,选方案一较划算;③当y1-y2>0时,得3x-30>0,解得x>10,当x>10时,y1>y2,选方案二较划算.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.22、见解析【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边右边,.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.23、(1)a-b;(2);(3)a=6,b=4【分析】(1)根据正方形的性质和即可求出AG的长度;(2)用两种不同的方法表示图形中阴影部分的面积:①求长为,宽为的矩形的面积;②通过可得阴影部分面积=四边形ABCD的面积-四边形DEFG的面积,可得;(3)根据正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2可得,代入原式并联立方程即可求出a、b的值.【详解】(1)∵四边形ABCD与四边形DEFG都是正方形,设AB=a,DG=b(a>b)∴∴(2)由题意得∵∴∴(3)∵正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2∴将代入中解得联立得解得.【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的性质以及应用是解题的关键.24、(1)甲:7,乙:7;(1)甲:3,乙:1.1【分析】(1)根据平均数的公式:平均数=所有数之和再除以数的个数;(1)方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度影视作品拍摄专业聘用合同3篇
- 小学信息技术第二册 网上交流信息教学实录 北京版
- 14《圆明园的毁灭》(教学实录)2024-2025学年-统编版五年级语文上册
- 2023四年级数学上册 2 公顷和平方千米第1课时 认识公顷配套教学实录 新人教版
- 钢筋购买合同
- 2024山西房产买卖合同(含环保材料及节能标准)3篇
- 个人房屋租赁合同
- 设施齐全商铺长期租赁合同
- 2024年中国水性聚酯透明底漆市场调查研究报告
- 2024年度智能仓储管理系统软件变更与物流跟踪服务合同3篇
- 市政工程施工单位竣工验收自评报告
- GB/T 43824-2024村镇供水工程技术规范
- 线上房展会活动方案
- PCB制造成本参数
- 操作系统智慧树知到期末考试答案2024年
- 银行消保专题培训总结
- 高三英语二轮复习写作专项读后续写人物情绪描写方法课件
- 粉丝运营及维护技巧
- 殡仪馆物业服务方案
- 2023-2024学年四川省成都市锦江区七年级(上)期末数学试卷(含解析)
- 电厂缺陷分析报告
评论
0/150
提交评论