




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第8章《成对数据的统计分析》人教A版2019选择性必修第三册8.2.1一元线性回归模型1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.学习目标1.样本相关系数:2.相关系数的性质:①当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.②|r|≤1;③当|r|越接近1时,成对数据的线性相关程度越强;当|r|越接近0时,成对数据的线性相关程度越弱;特别地,当|r|=0时,成对数据的没有线性相关关系;当|r|=1时,成对数据都落在一条直线上.环节一:创设情境,引入课题
恩格尔系数(Engel’sCoefficient)是根据恩格尔定律得出的比例数,指居民家庭中食物支出占消费总支出的比重,是表示生活水平高低的一个指标.其计算公式:恩格尔系数=食物支出金额÷总支出金额.
一个家庭收入越少,家庭收入中或者家庭总支出中用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中或者家庭支出中用来购买食物的支出所占比例将会下降.问题恩格尔系数是预测生活水平高低的一个模型,那么当两个变量线性相关时,我们如何对成对样本数据建立一个模型进行预测?提示为了对两个变量线性相关关系进行预测,我们通常建立一元线性回归模型进行预测.
生活经验告诉我们,儿子的身高与父亲的身高不仅线性相关,而且还是正相关,即父亲的身高较高时,儿子的身高通常也较高.
为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表8.2-1所示.表8.2-1编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182儿子身高/cm父亲身高/cm图8.2-1
利用前面表示数据的方法,以横轴表示父亲身高、纵轴表示儿子身高建立直角坐标系,再将表8.2-1中的成对样本数据表示为散点图,如图8.2-1所示.可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子身高和父亲身高线性相关.
利用统计软件,求得样本相关系数为,表明儿子身高和父亲身高正线性相关,且相关程度较高.环节二:观察分析,感知概念思考:根据表8.2-1中的数据,儿子身高和父亲身高这两个变量之间的关系可以用函数模型刻画吗?在表8.2-1的数据中,存在父亲身高相同而儿子身高不同的情况例如,第6个和第8个观测的父亲身高均为172cm,而对应的儿子身高分别为176cm和174cm;同样,第3,4两个观测中,儿子身高都是170cm,而父亲身高分别为173cm和169cm.可见儿子身高和父亲身高之间不是函数关系,也就不能用函数模型刻画图8.2-1中的散点大致分布在一条直线附近,表明儿子身高和父亲身高这两个变量之间有较强的线性相关关系,因此我们可以用一次函数来刻画父亲身高对儿子身高的影响,而把影响儿子身高的其他因素,如母亲身高、生活环境、饮食习惯等作为随机误差,得到刻画两个变量之间关系的线性回归模型其中,随机误差是一个随机变量.编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182环节三:抽象概括,形成概念
我们称(1)式为Y关于x的一元线性回归模型(simplelinearregressionmodel).其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差,模型中的Y也是随机变量,其值虽然不能由变量x的值确定,但是却能表示为bx+a与e的和(叠加),前一部分由x所确定,后一部分是随机的.如果e=0,那么Y与x之间的关系就可用一元线性函数模型来描述.环节四:辨析理解,深化概念思考:你能结合具体实例解释产生模型(1)中随机误差项的原因吗?在研究儿子身高与父亲身高的关系时,产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等;(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差;(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似也是产生随机误差e的原因.环节五:课堂练习,巩固运用1.经验回归方程:
我们将
称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法.环节六:归纳总结,反思提升2.一元线性回归模型:其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差.环节七:目标检测,作业布置完成教材:第107页练习第1,2,3题.练习
第107页1.说明函数模型与回归模型的区别,并分别举出两个应用函数模型和回归模型的例子.函数模型刻画的是变量之间具有的函数关系,是一种确定性的关系.回归模型刻画的是变量之间具有的相关关系,不是一种确定性的关系,即回归模型刻画的是两个变量之间的随机关系.举例:路程与速度的关系、正方体体积与边长的关系可以应用函数模型刻画,体重与身高的关系、冷饮销量与气温的关系可以应用回归模型刻画.2.在一元线性回归模型(1)中,参数b的含义是什么?参数b的含义可以解释为解释变量x对响应变量Y的均值的影响,变量x每增加1个单位,响应变量Y的均值将增加b个单位.例如,教科书中父亲身高为175cm的儿子身高的均值比父亲身高为174cm的儿子身高的均值高出0.839cm.注意:因为响应变量Y最终取值,除了受变量x的影响,还要受随机误差e的影响,所以不能解释成解释变量x每增加一个单位,响应变量Y增加b个单位.3.将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年办公软件供应商协议
- 2025年银行业务人员培训与发展协议
- 2025年权益转让策划补充协议范本
- 2025年农村经济合作社股份互转协议
- 2025年酒店预订服务合作协议
- 2025年合作策划协议书官方范本
- 2025年度供应商策划合作订购框架协议
- 教师教育能力提升的多维度框架分析
- 金融产品创新对消费需求的推动作用
- 商业空间节假日垃圾处理规划基础知识点归纳
- 2025超声造影增强剂市场分析
- 水表抄表员安全知识培训
- 2025年度民宿装修改造项目承包协议
- “教学评一体化”模式在小学语文教学中的应用策略
- QC实验室5S现场管理
- 2025年贵州出版集团招聘笔试参考题库含答案解析
- 攀成德铁四院中铁四院集团绩效考核管理制度
- 手术室急诊抢救的配合
- 《公路桥梁防船撞工程技术指南》
- 公务车驾驶员安全教育
- 北师大版数学四年级上册第八单元《可能性》大单元整体教学设计
评论
0/150
提交评论