版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市皇姑区2023-2024学年数学八上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,52.已知是整数,点在第四象限,则的值是()A. B.0 C.1 D.23.如图,,要说明,需添加的条件不能是()A. B. C. D.4.已知如图,在△ABC中,,于,,则的长为()A.8 B.6 C. D.5.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,86.下列计算正确的是()A. B.C. D.7.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD8.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.9.如图,在中国象棋棋盘中,如果将“卒”的位置记作,那么“相”的位置可记作()A. B. C. D.10.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.根据数量关系:的5倍加上1是正数,可列出不等式:__________.12.已知是方程组的解,则5a﹣b的值是_____.13.在平面直角坐标系中,把直线y=-2x+3沿y轴向上平移3个单位长度后,得到的直线函数关系式为__________.14.若关于x的分式方程+2无解,则m的值为________.15.若分式方程=无解,则增根是_________16.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的____________.17.若分式有意义,则的取值范围是__________.18.已知关于的不等式有解,则实数的取值范围是______.三、解答题(共66分)19.(10分)直线与直线垂直相交于,点在射线上运动,点在射线上运动,连接.(1)如图1,已知,分别是和角的平分线,①点,在运动的过程中,的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出的大小.②如图2,将沿直线折叠,若点落在直线上,记作点,则_______;如图3,将沿直线折叠,若点落在直线上,记作点,则________.(2)如图4,延长至,已知,的角平分线与的角平分线交其延长线交于,,在中,如果有一个角是另一个角的倍,求的度数.20.(6分)在等边中,点是线段的中点,与线段相交于点与射线相交于点.如图1,若,垂足为求的长;如图2,将中的绕点顺时针旋转一定的角度,仍与线段相交于点.求证:.如图3,将中的继续绕点顺时针旋转一定的角度,使与线段的延长线交于点作于点,若设,写出关于的函数关系式.21.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.22.(8分)(1)计算:(2)计算:(3)因式分解:(4)解方程:23.(8分)在中,,在的外部作等边三角形,为的中点,连接并延长交于点,连接.(1)如图1,若,求的度数;(2)如图2,的平分线交于点,交于点,连接.①补全图2;②若,求证:.24.(8分)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)1xy+y1﹣1+x1=x1+1xy+y1﹣1=(x+y)1﹣1=(x+y+1)(x+y﹣1)(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x1+1x﹣3=x1+1x+1﹣4=(x+1)1﹣11=(x+1+1)(x+1﹣1)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a1﹣b1+a﹣b;(1)分解因式:x1﹣6x﹣7;(3)分解因式:a1+4ab﹣5b1.25.(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26.(10分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.2、C【分析】根据第四象限内的点的坐标特征:横坐标>0,纵坐标<0,列出不等式,即可判断.【详解】解:∵点在第四象限,∴解得:∵是整数,∴故选C.【点睛】此题考查的是根据点所在的象限,求坐标中参数的取值范围,掌握各个象限内的点的坐标特征是解决此题的关键.3、D【分析】根据全等三角形的判定定理判断即可.【详解】A、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;B、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;C、∵∴在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;D、根据两边和其中一边的对角不能判断两三角形全等;故本选项错误;故选:D.【点睛】本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据等腰三角形的性质及全等三角形的判定定理进行证明是解此题的关键.4、B【分析】根据AB=AC=10,CD=2得出AD的长,再由BD⊥AC可知△ABD是直角三角形,根据勾股定理求出BD的长即可.【详解】∵,
∴,
∵BD⊥AC,
∴.故选:B.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.6、B【分析】分别根据对应的法则逐一分析即可【详解】解:A.,故本选项不符合题意;B.,故本选项符合题意;C.,故本选项不符合题意;D.,故本选项不符合题意;故选:B【点睛】本题考查了积的乘方、平方差公式、完全平方公式、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.7、C【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.8、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.9、C【分析】根据“卒”所在的位置可以用表示,可知数对中第一个数字表示列,第二个数字表示行,据此可用数对表示出“相”的位置.【详解】用数对分别表示图中棋子“相”的位置:;故选:C.【点睛】此题是考查点与数对,关键是根据已知条件确定数对中每个数字所表示的意义.10、A【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,则此时最小,设点A、B所在的直线为,则,解得:,∴,∴,解得:,∴点C的坐标为:;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.二、填空题(每小题3分,共24分)11、【分析】问题中的“正数”是关键词语,将它转化为数学符号即可.【详解】题中“x的5倍加上1”表示为:“正数”就是的5倍加上1是正数,可列出不等式:故答案为.【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.12、1【分析】把代入方程组,得,两个方程相加,即可求解.【详解】把代入方程组,得:,①+②得:5a﹣b=1.故答案为:1.【点睛】本题主要考查二元一次方程组的解的定义,掌握方程的解的定义和加减消元法,是解题的关键.13、y=-2x+1【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+1.
故答案为:y=-2x+1.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.14、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.15、【分析】根据分式方程的解以及增根的定义进行求解即可.【详解】解:∵分式方程无解∴分式方程有增根∴∴增根是.故答案是:【点睛】本题考查了分式方程的解、增根定义,明确什么情况下分式方程无解以及什么是分式方程的增根是解题的关键.16、稳定性【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性.【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.17、x≠1【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.18、【分析】先根据绝对值的意义求出的取值范围,然后根据不等式组解集的确定方法求解即可.【详解】由绝对值的意义可知:是表示数轴上数x对应的点到和对应点的距离之和,则,不等式有解,,即的取值范围是.故答案为:.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.三、解答题(共66分)19、(1)∠ACB的大小不会发生变化,∠ACB=45°;(2)30,60;(3)60°或72°.【分析】(1)①由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;②图2中,由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,根据三角形的内角和即可得到结论;图3中,根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(2)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可解答.【详解】(1)①∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;②∵图2中,将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵图3中,将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30,60;(2)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的倍,故有:①∠EAF=∠E,∠E=60°,∠ABO=120°(不合题意,舍去);②∠EAF=∠F,∠E=30°,∠ABO=60°;③∠F=∠E,∠E=36°,∠ABO=72°;④∠E=∠F,∠E=54°,∠ABO=108°(不合题意,舍去);.∴∠ABO为60°或72°.【点睛】本题主要考查的就是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.同学们在解答这种问题的时候,一定要注意外角与内角之间的联系,不能只关注某一部分.在需要分类讨论的时候一定要注意分类讨论的思想.20、(1)BE=1;(2)见解析;(3)【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED=90°,进而可得∠BDE=30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,根据AAS易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可根据ASA证明△EMD≌△FND,可得EM=FN,再根据线段的和差即可推出结论;(3)过点D作DM⊥AB于M,如图3,同(2)的方法和已知条件可得DM=DN=FN=EM,然后根据线段的和差关系可得BE+CF=2DM,BE﹣CF=2BM,在Rt△BMD中,根据30°角的直角三角形的性质可得DM=BM,进而可得BE+CF=(BE﹣CF),代入x、y后整理即得结果.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=1.∵点D是线段BC的中点,∴BD=DC=BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM=DN=FN=EM,∴BE+CF=BM+EM+FN-CN=NF+EM=2DM=x+y,BE﹣CF=BM+EM﹣(FN-CN)=BM+NC=2BM=x-y,在Rt△BMD中,∵∠BDM=30°,∴BD=2BM,∴DM=,∴,整理,得.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.21、证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22、(1)10;(2);(3);(4)原方程无解【分析】(1)利用零指数幂,负整数指数幂的意义化简即可得到结果;(2)利用平方差公式及完全平方公式化简即可得到结果;(3)原式提取公因式,再利用完全平方公式分解即可;(4)先把分式方程化为整式方程,求出x的值,再代入最减公分母进行检验即可;【详解】解:(1)==10;(2)==;(3)==;(4)方程两边同乘以最简公分母(x+2)(x-2),
得:-(x+2)2+16=-(x+2)(x-2),
-x2-4x-4+16=-x2+4,
-4x=-8
∴x=2,
经检验:x=2不是原方程的根,
∴原方程无解.【点睛】本题考查整式的混合运算,因式分解的提公因式法与公式法的综合运用,解分式方程,解题的关键是熟练掌握运算法则.解分式方程一定注意要验根.23、(1);(2)①补全图形,如图所示.见解析;②见解析.【解析】(1)分别求出∠ADF,∠ADB,根据∠BDF=∠ADF-∠ADB计算即可;
(2)①根据要求画出图形即可;
②设∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN即可解决问题;【详解】(1)解:如图1中,在等边三角形中,,.∵为的中点,∴,∵,∴,∵,,,∴,∴,∴.(2)①补全图形,如图所示.②证明:连接.∵平分,∴设,∵,∴.在等边三角形中,∵为的中点,∴,∴,∴,∴,在和中,∴,∴,,∴,在中,∴,∴,∴,∴,∴,∴.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年小学教师教学工作总结十篇
- 有关高中叙事作文600字七篇
- 小学数学教师研修心得体会(集合9篇)
- 辽宁省营口市大石桥市大石桥市第二初级中学2024-2025学年九年级上学期12月月考道德与法治试卷
- 国际乡村自驾车旅游休闲度假总体规划
- 冀教版三年级数学吨的认识说课获奖课件
- 典型压力管道失效模式介绍
- 关于中药材的分类和储存
- 六年级数学上册数学活动《确定起跑线》课件
- 《生物高考考纲解读》课件
- 四年级快乐读书吧阅读测试题希腊神话故事
- 初中语文七年级上册第五单元16《猫》(第一课时)习题(含解析)
- 预防住院患者跌倒坠床的防范措施及宣教
- 预防坍塌及高处坠落事故工作总结范文
- 大班健康《小小营养师》
- (新版)儿童入园体检表
- T-CHSA 003-2023 非麻醉医师实施口腔诊疗适度镇静镇痛专家共识
- 华为解决方案营销化五环十四招(简版)
- 大学生劳动实践清单(本科收藏版)
- 西屋破壁机料理机使用说明
- 2023年建筑工程施工质量验收规范检验批填写全套表格示范填写与说明
评论
0/150
提交评论