版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古翁牛特旗乌丹第六中学2024届八年级数学第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在正方形ABCD的外侧,以AD为边作等边△ADE,连接BE,则∠AEB的度数为()A.15° B.20° C.25° D.30°2.函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>23.对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表:节约用水量x(t)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.5户数6482由上表可知,这20户家庭该月节约用水量的平均数是()A.1.8t B.2.3t C.2.5t D.3t4.下列计算正确的是()A. B. C. D.5.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2) B.(4,2) C.(2,4) D.(2,1)6.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.7.计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣78.平面直角坐标系中,将直线l向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是()A.y=3x+2B.y=2x+4C.y=2x+1D.y=2x+39.在平行四边形ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().A.AB=4,AD=4 B.AB=4,AD=7 C.AB=9,AD=2 D.AB=6,AD=210.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()A.1个; B.2个;C.3个; D.4个.11.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)12.要使分式意义,则字母x的取值范围是()A.x≠0 B.x<0 C.x>2 D.x≠2二、填空题(每题4分,共24分)13.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.14.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_______.15.等腰三角形的腰长为5,底边长为8,则它底边上的高为_______,面积为________.16.若在实数范围内有意义,则的取值范围为_________________.17.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.18.如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,,,则四边形的面积为___________.三、解答题(共78分)19.(8分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的两个根都是整数,求m的值.20.(8分)解不等式组:,并在数轴上表示出它的解集.21.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(10分)某文具店从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)70100售价(元/台)90140该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?23.(10分)一个有进水管和一个出水管的容器,每分钟的进水量和出水量都是常数.从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水.如图表示的是容器中的水量y(升)与时间t(分钟)的图象.(1)当4≤t≤12时,求y关于t的函数解析式;(2)当t为何值时,y=27?(3)求每分钟进水、出水各是多少升?24.(10分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.25.(12分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:频数频率体育250.25美术30a音乐b0.35其他100.1请根据图完成下面题目:(1)抽查人数为_____人,a=_____.(2)请补全条形统计图;(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?26.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
根据△ADE为等边三角形,即可得出AE=AD,则AE=AB,由此可以判断△ABE为等腰三角形.△ADE为等边三角形,则∠DAE=60°,由此可以得出∠BAE=150°,根据△ABE为等腰三角形,即可得出∠AEB的度数.【题目详解】∵△ADE为等边三角形,∴AE=AD、∠DAE=60°,∵四边形ABCD为正方形,则AB=AD,∴AE=AB,则△ABE为等腰三角形,∴∠AEB=∠ABE====15°,则答案为A.【题目点拨】解决本题的关键在于得出△ABE为等腰三角形,再根据等腰三角的性质得出∠AEB的读数.2、A【解题分析】
根据分母不为0列式求值即可.【题目详解】由题意得x﹣1≠0,解得:x≠1.故选:A.【题目点拨】此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.3、B【解题分析】
根据每组的组中值利用加权平均数的定义列式计算即可得.【题目详解】解:由上表可知,这20户家庭该月节约用水量的平均数是=2.3(t),故选B.【题目点拨】本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键.4、B【解题分析】分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.详解:A.,故不正确;B.,故正确;C.,故不正确;D.,故不正确;故选B.点睛:本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.5、D【解题分析】
根据三角形的中位线的性质和点的坐标,解答即可.【题目详解】过N作NE⊥y轴,NF⊥x轴,∴NE∥x轴,NF∥y轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.【题目点拨】本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.6、C【解题分析】
根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【题目详解】解:A、x2+2x-1≠(x-1)2,故本选项错误;
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误.
故选:C.【题目点拨】本题考查多项式的因式分解,解题的关键是正确理解因式分解的意义.7、C【解题分析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.8、B【解题分析】在直线上取一点(-1,0),向左平移一个单位后坐标为(-2,0),设平移前的直线解析式为:y=2x+b,把(-2,0)带入,得b=4,所以y=2x+4,故选:B.点睛:此题考查了图形的平移与函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上点的平移相同.关键是要搞清楚平移前后的解析式有什么关系.9、B【解题分析】
利用平行四边形的性质知,平行四边形的对角线互相平分,再结合三角形三边关系分别进行分析即可.【题目详解】解:因为:平行四边形ABCD,AC=10,BD=6,所以:OA=OC=5,OB=OD=3,所以:,所以:C,D错误,又因为:四边形ABCD是平行四边形,∴AD=BC、∵AD=4,∴BC=4,∵AB=4,AC=10,∴AB+BC<AC,∴不能组成三角形,故此选此选项错误;因为:AB=4,AD=7,所以:三角形存在.故选B.【题目点拨】本题考查平行四边形的性质及三角形的三边关系,掌握平行四边形的性质和三角形三边关系是解题关键.10、C【解题分析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【题目详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C.【题目点拨】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.11、C【解题分析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【题目详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【题目点拨】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.12、D【解题分析】
本题主要考查分式有意义的条件:分母不能为1.【题目详解】要使分式有意义,则x﹣2≠1,解得x≠2.故选:D.【题目点拨】本题考查的是分式有意义的条件:当分母不为1时,分式有意义.二、填空题(每题4分,共24分)13、(x﹣3)2+64=x2【解题分析】
设绳索长为x尺,根据勾股定理列出方程解答即可【题目详解】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故答案为:(x﹣3)2+64=x2【题目点拨】本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.14、【解题分析】
先证明,再利用全等角之间关系得出,再由H为BF的中点,又为直角三角形,得出,为直角三角形再利用勾股定理得出BF即可求解.【题目详解】,.∴∠BEA=∠AFD,又∵∠AFD+∠EAG=90°,∴∠BEA+∠EAG=90°,∴∠BGF=90°.H为BF的中点,又为直角三角形,.∵DF=2,∴CF=5-2=3.∵为直角三角形.∴BF===.【题目点拨】本题主要考查全等三角形判定与性质,勾股定理,直角三角形斜边中线等于斜边一半知识点,熟悉掌握是关键.15、31【解题分析】
根据等腰三角形的性质求得高的长,从而再根据面积公式求得面积即可.【题目详解】解:根据等腰三角形的三线合一得底边上的高也是底边的中线,则底边的一半是4,根据勾股定理求得底边上的高是3,则三角形的面积=×8×3=1.故答案为:3,1.【题目点拨】本题考查了等腰三角形的性质和勾股定理.综合运用等腰三角形的三线合一以及直角三角形的勾股定理是解答本题的关键.16、【解题分析】
根据根式有意义的条件,得到不等式,解出不等式即可【题目详解】要使有意义,则需要,解出得到【题目点拨】本题考查根式有意义的条件,能够得到不等式是解题关键17、79【解题分析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)故答案为7918、6+4【解题分析】
连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.【题目详解】连结PP′,如图,
∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∵线段CP绕点C顺时针旋转60°得到线段CP',
∴CP=CP′=4,∠PCP′=60°,
∴△PCP′为等边三角形,
∴PP′=PC=4,
∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,
∴∠BCP=∠ACP′,且AC=BC,CP=CP′
∴△BCP≌△ACP′(SAS),
∴AP′=PB=5,
在△APP′中,∵PP′2=42=16,AP2=32=9,AP′2=52=25,
∴PP′2+AP2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴S四边形APCP′=S△APP′+S△PCP′=AP×PP′+×PP′2=6+4,
故答案为:6+4.【题目点拨】此题考查旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是解题的关键.三、解答题(共78分)19、(1);(2)【解题分析】
(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于m的不等式,求出不等式的解集即可得到m的范围;(2)由m为正整数,可得出m=1、2,将m=1或m=2代入原方程求出x的值,由该方程的两个根都是整数,即可确定m的值,【题目详解】解:(1)∵一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根,∴∴;(2)∵m为正整数,∴m=1或2,当m=1时,方程为:x2﹣3=0,解得:(不是整数,不符合题意,舍去),当m=2时,方程为:x2+2x=0,解得:都是整数,符合题意,综上所述:m=2.【题目点拨】本题主要考查了根的判别式,掌握根的判别式是解题的关键.20、﹣2<x≤3【解题分析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可。【题目详解】解:,解不等式①得:x>﹣2,解不等式②得:x≤3,所以不等式组的解集为﹣2<x≤3,在同一数轴上分别表示出它们的解集得【题目点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)46(2)见解析(3)①乙1.6,判断见解析②乙,理由见解析【解题分析】
解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,乙=30÷5=6,所以答案为:4,6;(2)如图所示:(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.22、(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解题分析】
(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【题目详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【题目点拨】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.23、(1)y=t+15;(2)当t为时,y=27;(3)每分钟进水、出水分别是5升、升.【解题分析】
(1)根据函数图象中的数据可以求得y关于t的函数解析式(2)将y=27代入(1)的函数解析式,即可求得相应t的值(3)根据函数图象中的数据可以求得每分钟进水、出水各是多少升【题目详解】(1)当4≤t≤12时,设y关于t的函数解析式为y=kt+b,,解得,∴y关于t的函数解析式为y=t+15;(2)把y=27代入y=t+15中,可得:t+15=27,解得,t=,即当t为时,y=27;(3)由图象知,每分钟的进水量为
20÷4=5(升),设每分钟的出水量为a升,20+5×(12-4)-(12-4)×a=30解得,a=,答:每分钟进水、出水分别是5升、升.【题目点拨】本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答。24、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级《短文两篇》课件
- 文化创意产业扶贫-洞察分析
- 虚拟现实康复训练-第2篇-洞察分析
- 微整形手术风险与伦理探讨-洞察分析
- 勤俭节约好少年事迹(6篇)
- 冬季雨雪的应急预案(5篇)
- 《差异量数》课件
- 企业实验室内训师的安全管理职责
- 幼儿教育行业亲子活动分享
- 船舶行业会计工作总结
- 国网基建国家电网公司输变电工程结算管理办法
- 100道递等式计算(能巧算得要巧算)
- 【2019年整理】园林景观设计费取费标准
- 中国地图含省份信息可编辑矢量图
- 完整word版,ETS5使用教程
- 路政运政交通运输执法人员考试题库
- 《血流动力学监测》PPT课件.ppt
- 企业技术标准化管理
- 2018年秋季人教版十一册数学第7、8单元测试卷
- 投资学第19章财务分析stu
- 已有输华贸易的国家(地区)及水产品品种目录
评论
0/150
提交评论