版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市青阳初级中学八年级数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为()A.4 B.16 C.2 D.42.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm3.函数y=2-x+1A.x=3 B.x≤2 C.x<2且x≠3 D.x≤2且x≠34.将一次函数y=﹣3x﹣2的图象向上平移4个单位长度后,图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画()A.2个 B.3个 C.4个 D.5个6.如图,在平行四边形中,与交于点,点在上,,,,点是的中点,若点以/秒的速度从点出发,沿向点运动:点同时以/秒的速度从点出发,沿向点运动,点运动到点时停止运动,点也时停止运动,当点运动()秒时,以点、、、为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或57.下列式子从左到右变形错误的是()A. B. C. D.8.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,169.如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是A.当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形B.当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形C.当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形D.当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形10.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个二、填空题(每小题3分,共24分)11.若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。12.若点在轴上,则点的坐标为__________.13.一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______14.如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.15.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.16.一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.17.约分___________.18.设的整数部分为,小数部分为,则的值等于________.三、解答题(共66分)19.(10分)如图,四边形是平行四边形,为上一点,连接并延长,使,连接并延长,使,连接,为的中点,连接.(1)求证:四边形是平行四边形;(2)若,,,求的度数.20.(6分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.21.(6分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?22.(8分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B为圆心,AC长为半径作弧;②以点C为圆心,AB长为半径作弧;③两弧交于点D,A,D在BC同侧;④连接AD,CD.所以四边形ABCD是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四边形ABCD是平行四边形∵∠ABC=90°∴四边形ABCD是矩形.(_______________)(填推理的依据)23.(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.24.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点O成中心对称的△A1B1C1;(2)作出将△A1B1C1向右平移3个单位,再向上平移4个单位后的△A2B2C2;(3)请直接写出点B2关于x轴对称的点的坐标.25.(10分)如图,直线与直线交于点,直线经过点.(1)求直线的函数表达式;(2)直接写出方程组的解______;(3)若点在直线的下方,直线的上方,写出的取值范围______.26.(10分)如图,中,、两点在对角线上,且.求证:.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
∵∠C=90°,CD⊥AB,∴∠ADC=∠CDB=90°,∠CAD+∠CBD=90°,∴∠CAD+∠ACD=90°,∴∠ACD=∠CBD,∴△ADC∽△CDB,∴,∵AD=8,DB=2∴CD=1.故选A2、C【解题分析】
首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【题目详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20cm,故选C.【题目点拨】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.3、B【解题分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【题目详解】根据题意得:2-x≥0x-3≠0解得:x≤2故选B【题目点拨】本题考查求函数的自变量的取值范围函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数(2)当函数表达式是分式时,考虑分式的分母不能为0(3)当函数表达式是二次根式时,被开方数非负.4、C【解题分析】
画出平移前后的函数图像,即可直观的确定答案.【题目详解】解:如图:平移后函数图像不经过第三象限,即答案为C.【题目点拨】本题考查了函数图像的平移,作图法是一种比较好的解题方法.5、D【解题分析】
根据平行四边形的判定方法即可解决问题.【题目详解】在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,故选D.【题目点拨】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.6、C【解题分析】
由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,,证得,求出AD的长,得出EC的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形是平行四边形,∴,∴,且∴∴,∵点是的中点∴,设当点P运动t秒时,以点、、、为顶点的四边形是平行四边形,∴∴,或∴或5故选:C.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.7、C【解题分析】
根据分式的性质逐个判断即可.【题目详解】解:,故选:C.【题目点拨】本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.8、D【解题分析】
根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【题目详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.【题目点拨】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.9、B【解题分析】
连接AC、BD,根据三角形中位线定理得到,,,,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【题目详解】解:连接AC、BD交于点O,,N,P,Q是各边中点,,,,,,,四边MNPQ一定为平行四边形,A说法正确,不符合题意;时,四边形MNPQ不一定为正方形,B说法错误,符合题意;时,,四边形MNPQ为菱形,C说法正确,不符合题意;时,,四边形MNPQ为矩形,D说法正确,不符合题意.故选B.【题目点拨】本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.10、A【解题分析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.二、填空题(每小题3分,共24分)11、(-1,3)【解题分析】
利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.【题目详解】解:∵方程组的解是,∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),∴直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).故答案为:(-1,3)【题目点拨】本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.12、【解题分析】
根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.【题目详解】解:因为点P(m+1,m-2)在x轴上,
所以m-2=1,解得m=2,
当m=2时,点P的坐标为(3,1),
故答案为(3,1).【题目点拨】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.13、2【解题分析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.详解:∵这个样本的众数为3,∴a,b,c中至少有两个数是3.∵平均数为2,∴1+3+a+b+c+2+2=2×7,∴a+b+c=6,∴a,b,c中有2个3,1个0,∴从小到大可排列为:0,1,2,2,3,3,3,∴中位数是2.故答案为:2.点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.14、80°【解题分析】
根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.【题目详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=4:5,∴∠B=×180°=80°,故答案为:80°.【题目点拨】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.15、【解题分析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=16、8.【解题分析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.【题目详解】∵数据2,6,,10,8的平均数是6,∴∴x=4,∴这组数据的方差是.考点:1.方差;2.平均数.17、【解题分析】
根据分式的性质,分子分母同时扩大或缩小相同倍数时分式的值不变即可解题.【题目详解】=,(分子分母同时除以6abc).【题目点拨】本题考查了分式的变形和化简,属于简单题,熟悉分式的性质是解题关键.18、2-【解题分析】
根据题意先求出a和b,然后代入化简求值即可.【题目详解】解:∵2<<3,∴a=2,b=﹣2,∴.故答案为2﹣.【题目点拨】二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.三、解答题(共66分)19、(1)见解析;(2).【解题分析】
(1)证明,与,即可;(2)要求的∠CBE是等腰三角形的底角,只需求出顶角∠ECB的度数即可.【题目详解】解:(1)证明:∵四边形是平行四边形,∴,,,∵,,∴是的中位线,∴,;∵为的中点,∴,∴,,∴,∴四边形是平行四边形;(2)解:∵,∴,∵,∴,∵,∴.【题目点拨】本题考查了平行四边形的性质与判定、三角形的中位线定理和等腰三角形的性质,合理选用平行四边形的判定方法是证明(1)题的关键;解(2)题的关键是把所求的角与已知角集中在同一个三角形中.20、8.50.78【解题分析】分析:(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;(2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.详解:甲的众数为:,方差为:,乙的中位数是:8;故答案为;从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.点睛:理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.21、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【解题分析】
(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【题目点拨】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.22、(1)见解析;(2)CD,BD,有一个角是直角的平行四边形是矩形【解题分析】
(1)根据作法画出对应的几何图形即可;
(2)先利用作图证明△ABC≌△DCB,得AB∥CD,根据一组对边平行且相等的四边形是平行四边形,由有一个角是直角的平行四边形是矩形可得结论.【题目详解】解:(1)如图1,四边形ABCD为所作;
(2)完成下面的证明:
证明:如图2,连接BD.
∵AB=CD,AC=BD,BC=BC,
∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB=90°.
∴AB∥CD.
∴四边形ABCD是平行四边形.
∵∠ABC=90°
∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)
故答案为:CD,BD,有一个角是直角的平行四边形是矩形.【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形和矩形的判定方法.23、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解题分析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;
(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;
(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【题目详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,
∴∠OPB=90°或∠OBP=90°,如图1所示:
①当∠OPB=90°时,△OPB为等腰直角三角形,
∴OP=BP=2,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为2秒;
②当∠OBP=90°时,△OPB为等腰直角三角形,
∴OP=2BP=4,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为4秒.
综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.
(3)∵BP平分△OAB的面积,
∴S△OBP=S△ABP,
∴OP=AP,
∴点P的坐标为(3,0).
设直线BP的解析式为y=ax+b(a≠0),
将B(2,-2),点P(3,0)代入y=ax+b,得:,
解得:,
∴直线BP的解析式为y=2x-1.
当x=0时,y=2x-1=-1,
∴点D的坐标为(0,-1).
过点B作BE⊥y轴于点E,如图2所示.
∵点B的坐标为(2,-2),点D的坐标为(0,-1),
∴BE=2,CE=4,
∴BD==2,
∴当BP平分△OAB的面积时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度地热能地暖项目投资合作框架合同3篇
- 2022-2023年广东省深圳市罗湖区六年级上册期中英语试卷及答案(沪教牛津版)
- 泰勒课程设计缺点
- 2024年事业单位临时工聘用合同样本3篇
- 2023-2024学年江苏省南京市江宁区小学三年级上册语文期末试题及答案
- 2024年林业资源委托育苗及技术咨询合同3篇
- 2024年国际项目团队保密与数据保护合同3篇
- 2024年度药品销售渠道拓展与合作伙伴招募协议3篇
- 2024年学生入学与校园住宿设施使用合同3篇
- 学前教育与性别平等教育考核试卷
- 昌乐二中271高效课堂培训与评价ppt课件
- 《国际经济法》案例思考题
- 省部联合减盐防控高血压项目培训教材
- T∕CHTS 10040-2021 公路无机结合料稳定粒料基层振动法施工技术指南
- 【作文素材】他被故宫开除,却成为“京城第一玩家”!——王世襄剖析
- 开发商退房通知书
- 模特的基础训练
- 药品招商流程
- 混凝土配合比检测报告
- 100道递等式计算(能巧算得要巧算)
- 【2019年整理】园林景观设计费取费标准
评论
0/150
提交评论