2024届辽宁省沈阳市和平区数学八下期末经典试题含解析_第1页
2024届辽宁省沈阳市和平区数学八下期末经典试题含解析_第2页
2024届辽宁省沈阳市和平区数学八下期末经典试题含解析_第3页
2024届辽宁省沈阳市和平区数学八下期末经典试题含解析_第4页
2024届辽宁省沈阳市和平区数学八下期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省沈阳市和平区数学八下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为()A. B. C. D.2.已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是()A. B.C. D.3.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1354.下列四组线段中,不能作为直角三角形三条边的是()A.8,15,17 B.1,2, C.7,23,25 D.1.5,2,2.55.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点6.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°7.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.48.如图,在中,,,分别为,,边的中点,于,,则等于()A.32 B.16 C.8 D.109.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17 B.22 C.17或22 D.无法计算10.如果,在矩形中,矩形通过平移变换得到矩形,点都在矩形的边上,若,且四边形和都是正方形,则图中阴影部分的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________12.若,则的值为__________,的值为________.13.分解因式b2(x﹣3)+b(x﹣3)=_____.14.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.15.计算__________.16.若分式方程无解,则等于___________17.化简________.18.如图,是互相垂直的小路,它们用连接,则_______.三、解答题(共66分)19.(10分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?20.(6分)为奖励初三优秀学生和进步显著学生,合阳中学初三年级组在某商店购买A、B两种文具为奖品,已知一件A种文具的单价比B种文具的单价便宜5元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.(1)求A种文具的单价;(2)已知初三年级准备奖励的优秀学生和进步显著学生共有200人,其中优秀学生奖励A种文具,进步显著学生奖励B种文具,年级组购买文具的总费用不超过3400元,求初三年级奖励的优秀学生最少有多少人?21.(6分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形(1)以A为顶点的平行四边形;(2)以A为对角线交点的平行四边形.22.(8分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECCD是矩形.23.(8分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:(1)求与之间的函数关系式,并写出的取值范围;(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?24.(8分)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90∘,再向下平移2格后的图形△A′B′C′.25.(10分)(1)计算(结果保留根号);(2)分析(1)的结果在哪两个整数之间?26.(10分)若一次函数不经过第三象限,求m、n的取值范围;

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.【题目详解】解:∵BE⊥AC,CD⊥AC,∴∠ACD=∠BEA=90°,∴∠CDB+∠DCA=90°,又∵∠DAB=∠DAC+∠BAC=90°在△ACD和△AEB中,∴△ACD≌△BEA(AAS)∴AC=BE∵△ABC的面积为8,∴,解得BE=4,在Rt△ABE中,.故选择:A.【题目点拨】本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.2、C【解题分析】

利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.【题目详解】.解:由正比例函数图象可得:>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【题目点拨】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.3、C【解题分析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.4、C【解题分析】

根据勾股定理的逆定理逐一判断即可.【题目详解】A.因为82+152=172,故以8,15,17为三边长能构成直角三角形,故本选项不符合题意;B.12+22=()2,故以1,2,为三边长能构成直角三角形,故本选项不符合题意;C.72+232≠252,故以7,23,25为三边长不能构成直角三角形,故本选项符合题意;D.,故以为三边长能构成直角三角形,故本选项不符合题意.故选C.【题目点拨】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.5、A【解题分析】

先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【题目详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000

∴BC2+AC2=AB2,

∴△ABC是直角三角形,

∴活动中心P应在斜边AB的中点.

故选:A.【题目点拨】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.6、B【解题分析】

先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.7、C【解题分析】

根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【题目详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【题目点拨】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.8、B【解题分析】

利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【题目详解】解:∵D、F分别是AB、BC的中点,

∴DF是△ABC的中位线,

∴DF=AC(三角形中位线定理);

又∵E是线段AC的中点,AH⊥BC,

∴EH=AC,

∴EH=DF=1.

故选B.【题目点拨】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.9、B【解题分析】

求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=1.故选:B.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.10、A【解题分析】

设两个正方形的边长为x,表示出MK、JM,然后根据三个面积的关系列出方程并求出x,再求出S3.【题目详解】设两个正方形的边长为x,则MK=BF-EJ=4-x,JM=BE-KF=3-x,∵4S3=S1+S2,∴4(4-x)(3-x)=2x2,整理得,x2-14x+24=0,解得x1=2,x2=12(舍去),∴S1=S2=22=4,∴AB=BE+x=3+2=5,BC=BF+x=4+2=6,∴S矩形ABCD=AB•BC=30,∵4S3=S1+S2,∴S3=(S1+S2)=×(4+4)=2.故选A.【题目点拨】】本题考查了矩形的性质,平移的性质,平移前后的两个图形能够完全重合,关键在于表示出MK、JM并列出方程.二、填空题(每小题3分,共24分)11、【解题分析】

利用判别式的意义得到,然后解不等式即可.【题目详解】解:根据题意得:,解得:,故答案为:【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12、,【解题分析】

令,用含k的式子分别表示出,代入求值即可.【题目详解】解:令,则,所以,.故答案为:(1).,(2).【题目点拨】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.13、b(x﹣3)(b+1)【解题分析】

用提公因式法分解即可.【题目详解】原式=b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).故答案为:b(x﹣3)(b+1)【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.14、1【解题分析】

根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.【题目详解】解:根据题意得:∠BAC=90°,AB=160米,AC=120米,

在Rt△ABC中,BC===1米.

故答案为:1.【题目点拨】本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.15、【解题分析】

将化成最简二次根式,再合并同类二次根式.【题目详解】解:故答案为:【题目点拨】本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.16、【解题分析】

先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.【题目详解】解:,去分母得:,所以:,因为:方程的增根是,所以:此时,故答案为:.【题目点拨】本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.17、【解题分析】

根据二次根式有意义条件求解即可.【题目详解】根据题意知:2-a≥0,a-2≥0,解得,a=2,∴3×2+0+0=6.故答案为:6.【题目点拨】此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.18、450°【解题分析】

如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠的度数.【题目详解】解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,则∠BAQ=∠DEQ=90°,∵DE⊥AB,QA⊥AB,∴DE∥QA,∴∠AQE=180°-∠DEQ=90°,∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,∴=720°-90°×3=450°.故答案为:450°.【题目点拨】本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.三、解答题(共66分)19、(1)见解析;(2)平行四边形MENF是菱形,见解析;(3)即当AD:AB=2:1时,四边形MENF是正方形,理由见解析.【解题分析】

(1)证明△ABM≌△DCM即可求解(2)先证明四边形MENF是平行四边形,再根据(1)中的△ABM≌△DCM可得BM=CM,即ME=MF,即可求证平行四边形MENF是菱形(3)当AD:AB=2:1时,易得∠ABM=∠AMB=45°,∠EMF=180°﹣45°﹣45°=90°,又四边形MENF是菱形,故可证菱形MENF是正方形,【题目详解】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM中,∴△ABM≌△DCM(SAS),∴BM=CM;(2)四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,∵MF=CM,∴NE=FM,∵NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90°∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形,即当AD:AB=2:1时,四边形MENF是正方形.【题目点拨】此题主要考查平行四边形、菱形以及正方形的判定条件,其中涉及全等三角形20、(1)一件种文具的价格为15元;(2)初三年级奖励的优秀学生最少有120人.【解题分析】

(1)设A种文具的单价为x元,则B种文具的单价为每件(x+5)元,利用用300元买A种文具的件数是用200元买B种文具的件数的2倍得出等式,求出即可;(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人,根据“年级组购买文具的总费用不超过3400元”列出不等式即可求得结果.【题目详解】(1)A种文具的单价为x元,则B种文具的单价为每件(x+5)元,根据题意得出:,解得:x=15,经检验得出:x=15是原方程的根,答:A种文具的单价为15元;(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人.依题意,得15a+20(200-a)≤3400,解得:a≥120,答:初三年级奖励的优秀学生最少有120人.【题目点拨】本题考查了分式方程的应用及一元一次不等式的应用,分析题意,找到合适的等量关系与不等量关系是解决问题的关键.21、(1)见解析;(2)见解析【解题分析】

(1)直接利用平行四边形的性质分析得出答案;(2)直接利用菱形的性质得出符合题意的答案.【题目详解】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:平行四边形DEFM即为所求.【题目点拨】此题考查应用设计与作图,正确应用网格分析是解题关键.22、见解析【解题分析】

首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.【题目详解】证明:∵CF=BC,∴C点是BF中点,∵点G是DF中点,∴CG是△DBF中位线,∴CG∥BD,CG=BD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论