2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题含解析_第1页
2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题含解析_第2页
2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题含解析_第3页
2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题含解析_第4页
2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省滨州市六校数学八年级第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果一次函数y=kx+不经过第三象限,那么k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥02.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关3.下列点在直线上的是()A. B. C. D.4.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④5.下列各式中,是最简二次根式的是()A. B. C. D.6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5 B.6,8,10 C.5,12,13 D.4,5,67..一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图像是A. B. C. D.8.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤9.一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是()A. B. C. D.10.如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+811.如图,下列判断中正确的是()A.如果∠3+∠2=180°,那么AB∥CD B.如果∠1+∠3=180°,那么AB∥CDC.如果∠2=∠4,那么AB∥CD D.如果∠1=∠5,那么AB∥CD12.如图,,,则()A.垂直平分 B.垂直平分C.平分 D.以上结论均不对二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.14.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.15.如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.16.若代数式和的值相等,则______.17.甲、乙两人进行射击比赛,在相同条件下各射击12次,他们的平均成绩各为8环,12次射击成绩的方差分别是:S甲=3,S乙=2.5,成绩较为稳定的是__________.(填“甲”或“乙”)18.如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是.(写出一个即可)三、解答题(共78分)19.(8分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,求证:(1);(2).20.(8分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.求证:AE=2CE.21.(8分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.(1)求证:△MEF是等腰三角形;(2)若∠A=,∠ABC=50°,求∠EMF的度数.22.(10分)先化简,再求值:,其中是满足不等式组的整数解.23.(10分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.24.(10分)某校组织春游活动,提供了A、B、C、D四个景区供学生选择,并把选择最多的景区作为本次春游活动的目的地。经过抽样调查,并将采集的数据绘制成如下两幅不完整的统计图,请根据图①、②所提供的信息,解答下列问题:(1)本次抽样调查的学生有______名,其中选择景区A的学生的频率是______:(2)请将图②补充完整:(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择景区C?(要有解答过程)25.(12分)如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.(1)四边形是__________;(填矩形、菱形、正方形或无法确定)(2)如图,相交于点,若四边形的周长为,求的度数.26.计算:(1)(2)-

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

根据一次函数y=kx+b的图象与k、b之间的关系,即可得出k的取值范围.【题目详解】∵一次函数y=kx+的图象不经过第三象限,∴一次函数y=kx+的图象经过第一、二、四象限,∴k<1.故选:A.【题目点拨】本题考查了一次函数的图象与系数k,b的关系,熟练掌握一次函数的图象的性质是解题的关键.2、A【解题分析】

设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,根据题意列出不等式进行求解即可得.【题目详解】设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,则甲的利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0,∴0.5b﹣0.5a<0,∴a>b,故选A.【题目点拨】本题考查了不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.3、C【解题分析】

将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【题目详解】解:将x=2代入y=-x+5得,y=3,不符合题意;将x=3代入y=-x+5得,y=2,不符合题意;将x=4代入y=-x+5得,y=1,符合题意;将x=1代入y=-x+5得,y=4,不符合题意;故选C.【题目点拨】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.4、D【解题分析】

有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【题目详解】如图点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.

∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.

∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.

∴AC⊥BD.

①平行四边形的对角线不一定互相垂直,故①错误;

②菱形的对角线互相垂直,故②正确;

③矩形的对角线不一定互相垂直,故③错误;④对角线互相垂直的四边形,故④正确.

综上所述,正确的结论是:②④.

故选D.【题目点拨】此题主要考查矩形的性质及三角形中位线定理的综合运用.5、B【解题分析】

根据最简二次根式的定义即可求解.【题目详解】A.,分母出现根号,故不是最简二次根式;B.为最简二次根式;C.=2,故不是最简二次根式;D.,根号内含有小数,故不是最简二次根式,故选B.【题目点拨】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.6、D【解题分析】

根据勾股定理即可判断.【题目详解】A.∵32+42=52,故为直角三角形;B.62+82=102,故为直角三角形;C.52+122=132,故为直角三角形;D.42+52≠62,故不是直角三角形;故选D.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.7、D【解题分析】

燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),图象是以(0,20),(4,0)为端点的线段.【题目详解】解:燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),

图象是以(0,20),(4,0)为端点的线段.

故选:D.【题目点拨】此题首先根据问题从图中找出所需要的信息,然后根据燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系h=20-5t(0≤t≤4),做出解答.8、C【解题分析】

利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【题目详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【题目点拨】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.9、C【解题分析】

根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【题目详解】解:A、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴一次函数y=-kx+k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误.故选C.【题目点拨】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.10、D【解题分析】

连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.【题目详解】解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,∴点E为OC中点,∴OE=EC=OC=3,在Rt△AOE中,OE=3,AO=4,∴AE==5,∵将△OAE沿AE翻折,使点O落在点O′处,∴AE垂直平分OO',∴OM=O'M,在Rt△AOE中,∵S△AOE=AO•OE=AE•OM,∴×3×4=×5×OM,∴OM=,∴OO'=,∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,∴∠MAO=∠O'OH,又∵∠AOE=∠OHO'=90°,∴△AOE∽△OHO',∴==,即==,∴OH=,O'H=,∴O'的坐标为(,),将点O'(,),C(6,0)代入y=kx+b,得,,解得,k=﹣,b=8,∴直线CO'的解析式为y=﹣x+8,故选:D.【题目点拨】本题考查了轴对称的性质,相似三角形的判定与性质,待定系数法等,解题关键是利用三角形相似的性质求出点O'的坐标.11、D【解题分析】分析:直接利用平行线的判定方法分别判断得出答案.详解:A、如果∠3+∠2=180°,无法得出AB∥CD,故此选项错误;B、如果∠1+∠3=180°,无法得出AB∥CD,故此选项错误;C、如果∠2=∠4,无法得出AB∥CD,故此选项错误;D、如果∠1=∠5,那么AB∥CD,正确.故选D.点睛:此题主要考查了平行线的判定,正确掌握相关判定方法是解题关键.12、B【解题分析】

根据段垂直平分线的判定定由AC=AD得到点A在线段CD的垂直平分线上,由BC=BD得到点B在线段CD的垂直平分线上,而两点确定一直线,所以可判断AB垂直平分CD.【题目详解】解:∵AC=AD,∴点A在线段CD的垂直平分线上,∵BC=BD,∴点B在线段CD的垂直平分线上,∴AB垂直平分CD.故选:B.【题目点拨】本题考查了线段垂直平分线的判定与性质:到线段两端点的距离相等的点在这条线段的垂直平分线上;线段垂直平分线上任意一点,到线段两端点的距离相等.二、填空题(每题4分,共24分)13、2或.【解题分析】

分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【题目详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【题目点拨】本题主要考查平行四边形的性质及解一元一次方程.14、(5,4).【解题分析】

利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【题目详解】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为(5,4).15、1cm【解题分析】

根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.【题目详解】解:∵E为△ABC中AB边的中点,∴BE=EA.∵EF∥BC,∴=,∴BF=FC,则EF为△ABC的中位线,∴AC=2EF=1.故答案为1.【题目点拨】本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.16、【解题分析】

由题意直接根据解分式方程的一般步骤进行运算即可.【题目详解】解:由题意可知:=故答案为:.【题目点拨】本题考查解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.17、乙【解题分析】

根据方差的意义,比较所给的两个方差的大小即可得出结论.【题目详解】∵,乙的方差小,∴本题中成绩较为稳定的是乙,故填乙.【题目点拨】本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.18、△DBE(或△FEC).【解题分析】△DBE形状和大小没有变化,属于平移得到;△DEF方向发生了变化,不属于平移得到;△FEC形状和大小没有变化,属于平移得到.所以图中能与它重合的三角形是△DBE(或△FEC).故答案为:△DBE(或△FEC).三、解答题(共78分)19、(1)证明见详解;(2)证明见详解.【解题分析】

(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.根据全等三角形的性质得到AE=MG,∠MGO=∠AEO,根据三角形的内角和得到∠MGA+∠GAE=180°,根据正方形的性质得到AG=AB,AE=AC,∠BAG=∠CAE=90°,根据全等三角形的性质得到AM=BC,等量代换即可得到结论;(2)根据全等三角形的性质得到∠M=∠EAO,∠M=∠ACB,等量代换得到∠EAO=∠ACB,求得∠AHC=90°,根据垂直的定义即可得到结论.【题目详解】解:(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.∵O为EG的中点,∴OG=OE,在△AOE与△MOG中,,∴△AOE≌△MOG(SAS),∴AE=MG,∠MGO=∠AEO,∴∠MGA+∠GAE=180°,∵四边形ABFG和四边形ACDE是正方形,∴AG=AB,AE=AC,∠BAG=∠CAE=90°,∴AC=GM,∠GAE+∠BAC=180°,∴∠BAC=∠AGM,在△AGM与△ABC中,,∴△AGM≌△ABC(SAS),∴AM=BC,∵AM=2AO,∴;(2)由(1)知,△AOE≌△MOG,△AGM≌△ABC,∴∠M=∠EAO,∠M=∠ACB,∴∠EAO=∠ACB,∵∠CAE=90°,∴∠OAE=∠CAH=90°,∴∠ACB+∠CAH=90°,∴∠AHC=90°,∴AH⊥BC.即.【题目点拨】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20、见解析【解题分析】

由DE为垂直平分线可以知道,AE=BE,只要得到BE=2CE,即可,利用∠A=30°和∠C=90°,即可得到所求【题目详解】解:连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,∵∠CBE=30°∴BE=2CE,∴AE=2CE.【题目点拨】本题主要考查垂直平分线的用法,掌握垂直平分线的性质是关键21、(1)见解析;(2)∠EMF=40°【解题分析】

(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.【题目详解】(1)∵CF⊥AB于点F,BE⊥AC于点E,∴△BCE和△BCF为直角三角形∵M为BC的中点∴ME=BC,MF=BC∴ME=MF即△MEF是等腰三角形(2)∵∠A=70°,∠ABC=50°,∴∠ACB=180°-70°-50°=60°由(1)可知MF=MB,ME=MC,∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°【题目点拨】本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.22、化简得:求值得:.【解题分析】

先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.【题目详解】解:因为,解得:<,因为为整数,所以.原式因为,所以取,所以:上式.【题目点拨】本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.23、1.【解题分析】

先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【题目详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上

∴BC'=AB=3,CF=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论