湖北省荆州市南昕学校2024届数学八下期末联考模拟试题含解析_第1页
湖北省荆州市南昕学校2024届数学八下期末联考模拟试题含解析_第2页
湖北省荆州市南昕学校2024届数学八下期末联考模拟试题含解析_第3页
湖北省荆州市南昕学校2024届数学八下期末联考模拟试题含解析_第4页
湖北省荆州市南昕学校2024届数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆州市南昕学校2024届数学八下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把中根号外的(a-1)移入根号内,结果是()A. B. C. D.2.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC3.已知直线不经过第一象限,则的取值范围是().A. B. C. D.4.如图,▱ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm5.已知一次函数y=2x+b,其中b<0,函数图象可能是()A.A B.B C.C D.D6.下列各式中,最简二次根式为()A. B. C. D.7.下列命题中,是假命题的是()A.四个角都相等的四边形是矩形B.正方形的对角线所在的直线是它的对称轴C.对角线互相平分且平分每一组对角的四边形是菱形D.一组对边相等,另一组对边平行的四边形是平行四边形8.在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形10.下列运算中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。

12.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.13.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.14.如图,在正方形的外侧,作等边,则的度数是__________.15.在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.16.已知一次函数y=﹣2x+5,若﹣1≤x≤2,则y的最小值是_____.17.如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为______________________________.

18.已知,若是二元一次方程的一个解,则代数式的值是____三、解答题(共66分)19.(10分)先化简,再求值:(a+)÷,其中a=1.20.(6分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)先化简,再求值(1)已知,求的值.(2)当时,求的值.22.(8分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.(1)点的坐标是________,点的坐标是________;(2)直线上有一点,若,试求出点的坐标;(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.23.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)证明:△ACB≌△EFB;(2)求证:四边形ADFE是平行四边形.24.(8分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.25.(10分)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)试证明在旋转过程中,△MNO的边MN上的高为定值;(4)设△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.26.(10分)市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分:“了解很多”、“了解较多”、“了解较少”、“不了解”),对本市某所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅不完整统计图.根据以上信息,解答下列题.(1)补全条形统计图.(2)本次抽样调查了多少名学生?在扇形统计图中,求“”所应的圆心角的度数.(3)该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.【题目详解】∵要是根式有意义,必须-≥0,∴a-1<0,∴(a-1)=-,故选C.【题目点拨】本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.2、B【解题分析】【分析】由矩形的判定方法即可得出答案.【题目详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【题目点拨】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.3、D【解题分析】试题解析:∵直线不经过第一象限,则有:解得:.故选.4、C【解题分析】

根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【题目详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.∵EO⊥AC,∴AE=EC.∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).故选C.【题目点拨】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力.5、A【解题分析】对照该函数解析式与一次函数的一般形式y=kx+b(k,b为常数,k≠0)可知,k=2.故k>0,b<0.A选项:由图象知,k>0,b<0,符合题意.故A选项正确.B选项:由图象知,k<0,b<0,不符合题意.故B选项错误.C选项:由图象知,k>0,b>0,不符合题意.故C选项错误.D选项:由图象知,k<0,b>0,不符合题意.故D选项错误.故本题应选A.点睛:本题考查了一次函数的图象与性质.一次函数解析式的系数与其图象所经过象限的关系是重点内容,要熟练掌握.当k>0,b>0时,一次函数的图象经过一、二、三象限;当k>0,b<0时,一次函数的图象经过一、三、四象限;当k<0,b>0时,一次函数的图象经过一、二、四象限;当k<0,b<0时,一次函数的图象经过二、三、四象限.6、B【解题分析】

根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.【题目详解】A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;B符合最简二次根式的条件,故正确;C被开方数中含有分母6,不是最简二次根式,故错误;D被开方数中含有能开得尽方的因式,不是最简二次根式,故错误;故选:B.【题目点拨】本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.7、D【解题分析】

根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【题目详解】解:A、四个角都相等的四边形是矩形,是真命题;B、正方形的对角线所在的直线是它的对称轴,是真命题;C、对角线互相平分且平分每一组对角的四边形是菱形,是真命题;D、一组对边相等且平行的四边形是平行四边形,是假命题;故选D.【题目点拨】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、D【解题分析】试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),∵k>0,b=1>0,∴图象经过第一、二、三象限,不经过第四象限.故选D.考点:一次函数图象与几何变换.9、C【解题分析】

先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【题目详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【题目点拨】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.10、B【解题分析】

根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.【题目详解】A.不能合并,所以A选项错误;B.原式=,所以B选项正确;C.原式=,所以C选项错误;D.原式=3,所以D选项错误。故选B.【题目点拨】此题考查二次根式的混合运算,掌握运算法则是解题关键二、填空题(每小题3分,共24分)11、5或1.【解题分析】

先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.【题目详解】证明:∵∠A=∠ABC=90°,

∴BC∥AD,

∴∠CBE=∠DFE,

在△BEC与△FED中,∴△BEC≌△FED,

∴BE=FE,

又∵E是边CD的中点,

∴CE=DE,

∴四边形BDFC是平行四边形;(1)BC=BD=5时,由勾股定理得,AB===,

所以,四边形BDFC的面积=5×=5;

(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,

所以,AG=BC=5,

所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,

所以,四边形BDFC的面积=4×5=1;

(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;

综上所述,四边形BDFC的面积是5或1.故答案为:5或1.【题目点拨】本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.12、y=﹣4x﹣1【解题分析】

根据上加下减的法则可得出平移后的函数解析式.【题目详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【题目点拨】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.13、8【解题分析】

解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.14、【解题分析】

先求出的度数,即可求出.【题目详解】解:由题意可得,,故答案为:【题目点拨】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.15、8.5【解题分析】根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.故答案:8.5.16、1【解题分析】

根据一次函数的性质得出其增减性,进而解答即可.【题目详解】解:∵一次函数y=﹣2x+5,k=﹣2<0,∴y随x的增大而减小,∵﹣1≤x≤2,∴当x=2时,y的最小值是1,故答案为:1【题目点拨】此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键.17、(3,4)或(1,-2)或(-1,2)【解题分析】

由平行四边形的性质:平行四边形的对边平行且相等,即可求得点C的坐标;注意三种情况.【题目详解】如图所示:∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),

∴三种情况:

①当AB为对角线时,点C的坐标为(3,4);

②当OB为对角线时,点C的坐标为(1,-2);

③当OA为对角线时,点C的坐标为(-1,2);

故答案是:(3,4)或(1,-2)或(-1,2).【题目点拨】考查了平行四边形的性质:平行四边形的对边平行且相等.解题的关键是要注意数形结合思想的应用.18、【解题分析】

把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.【题目详解】解:把代入方程,得到,∵∴原式=,故答案为:.【题目点拨】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.三、解答题(共66分)19、2.【解题分析】

分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.详解:(a+)÷=[+]•=•=•=,当a=1时,原式==2.点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.20、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)【解题分析】

(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【题目详解】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,-6);(3)当以AB为对角线时,点D坐标为(-7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(-5,-3).【题目点拨】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、(1);(2)【解题分析】

(1)先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可;(2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x=代入化简后的式子即可得到答案.【题目详解】(1)解:原式=(2分)===当,原式==(2)解:原式当时,原式【题目点拨】本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.22、(1),;(2)或;(3).【解题分析】

(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.【题目详解】解:(1)将A(8,0)代入得:,解得:b=6;∴令x=0,得:y=6,∴点的坐标为∵C为AB中点,∴的坐标为故答案为:点的坐标为,的坐标为;(2)或由题可得S△AOC=∵∴S△NOA=设S△NOA=解得:n=6或n=10将n=6代入得;将n=10代入得;∴或(3)依照题意画出图形,如图所示.解图1解图2∵.设直线的解析式为,则有,解得:,∴直线的解析式为.∵点在直线上,点在直线上,点的横坐标为,轴,∴,当时,;当时,.故与的函数解析式为.【题目点拨】本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.23、(1)见详解;(2)见详解.【解题分析】

(1)由△ABE是等边三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下来依据AAS证明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD=EF,然后再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.【题目详解】解:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【题目点拨】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.24、(1)见解析;(2)BD=2.【解题分析】

(1)在平行四边形ABCD中,AC与BD互相平分,OA=OC,OB=OD,又E,F为OB,OD的中点,所以OE=OF,所以AC与EF互相平分,所以四边形AECF为平行四边形;

(2)首先根据平行四边形的性质可得AO=CO,BO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.【题目详解】(1)证明:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F为OB,OD的中点,∴OE=OF,∴AC与EF互相平分,∴四边形AECF为平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC=2,∴AO=2,∵AB=1,AC⊥AB,∴,∴BD=.【题目点拨】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形对角线互相平分.25、(1)OA在旋转过程中所扫过的面积为0.5π;(1)旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度;(3)MN边上的高为1(2)在旋转正方形OABC的过程中,p值无变化.见解析.【解题分析】

(1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.

(1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.

(3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.

(2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.【题目详解】解:(1)过点M作MH⊥y轴,垂足为H,如图1,

∵点M在直线y=x上,

∴OH=MH.

在Rt△OHM中,

∵tan∠MOH==1,

∴∠MOH=25°.

∵A点第一次落在直线y=x上时停止旋转,

∴OA旋转了25°.

∵正方形OABC的边长为1,

∴OA=1.

∴OA在旋转过程中所扫过的面积为=0.5π.∵A点第一次落在直线y=x上时停止旋转,∴OA旋转了25度.∴OA在旋转过程中所扫过的面积为0.5π.(1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25度.∴∠BMN=∠BNM.BM=BN.又∵BA=BC,AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON.∴∠AOM=1/1(90°-25°)=11.5度.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度.(3)证明:过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论