版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市民办和衷中学数学八下期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x2.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB3.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.修车时间为15分钟4.下列是假命题的是()A.平行四边形对边平行 B.矩形的对角线相等C.两组对边分别平行的四边形是平行四边形 D.对角线相等的四边形是矩形5.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不对6.已知y1x5,y22x1.当y1y2时,x的取值范围是()A.x5 B.x12 C.x6 D.x7.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.8.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°9.一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形10.如图,边长2的菱形ABCD中,,点M是AD边的中点,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为A. B. C. D.二、填空题(每小题3分,共24分)11.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.12.数据3,7,6,,1的方差是__________.13.如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.15.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.16.直线与直线平行,且经过,则直线的解析式为:__________.17.3-1×18.不等式组的解集为_________.三、解答题(共66分)19.(10分)观察下列各式:①,②;③,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.20.(6分)已知:如图,在平面直角坐标系xOy中,A(0,8),B(0,4),点C在x轴的正半轴上,点D为OC的中点.(1)当BD与AC的距离等于2时,求线段OC的长;(2)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线BD的解析式.21.(6分)如图1在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线移动到点D时停止,出发时以a单位/秒匀速运动:同时点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止,出发时以b单位/秒运动,两点相遇后点P运动速度变为c单位/秒运动,点Q运动速度变为d单位/秒运动:图2是射线OP随P点运动在正方形ABCD中扫过的图形的面积y1与时间t的函数图象,图3是射线OQ随Q点运动在正方形ABCD中扫过的图形的面积y2与时间(1)正方形ABCD的边长是______.(2)求P,Q相遇后∠POQ在正方形中所夹图形面积S与时间t的函数关系式.22.(8分)如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.23.(8分)解方程(1)(2)(3)(4)(公式法)24.(8分)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+1的4分函数为:当x≤4时,y[4]=3x+1;当x>4时,y[4]=-3x-1.(1)如果y=x+1的-1分函数为y[-1],①当x=4时,y[-1]______;当y[-1]=-3时,x=______.②求双曲线y=与y[-1]的图象的交点坐标;(1)如果y=-x+1的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+1的0分函数y[0]的图象无交点时,直接写出k的取值范围.25.(10分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.26.(10分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,(1)过小时后他俩的距离是多少?(2)经过多少时间,他俩的距离是?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据师生的总费用,可得函数关系式.【题目详解】解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选A.【题目点拨】本题考查了函数关系式,师生的总费用的等量关系是解题关键.2、B【解题分析】
根据平行四边形的判定方法一一判断即可;【题目详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【题目点拨】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、D【解题分析】
观察图象,明确每一段小明行驶的路程、时间,作出判断.【题目详解】A、自行车发生故障时离家距离为1000米,正确;B、学校离家的距离为2000米,正确;C、到达学校时共用时间20分钟,正确;D、由图可知,修车时间为15-10=5分钟,可知D错误.故选:D.【题目点拨】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4、D【解题分析】
利用平行四边形的判定、矩形的性质及矩形的判定方法分别判断后即可确定正确的选项.【题目详解】解:A、平行四边形的两组对边分别平行,正确,是真命题;
B、矩形的对角线相等,正确,是真命题;
C、两组对边分别平行的四边形是平行四边形,正确,是真命题;
D、对角线相等的平行四边形是矩形,故错误,是假命题,
故选:D.【题目点拨】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、矩形的性质及矩形的判定方法,难度不大.5、A【解题分析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.6、C【解题分析】
由题意得到x-5>2x+1,解不等式即可.【题目详解】∵y1>y2,∴x−5>2x+1,解得x<−6.故选C.【题目点拨】此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.7、D【解题分析】
根据图像分析不同时间段的水面上升速度,进而可得出答案.【题目详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.【题目点拨】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.8、C【解题分析】
直接利用多边形的内角和与外角和定义分析得出答案.【题目详解】八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选C.【题目点拨】本题考查了多边形的内角和与外角和,正确把握相关定义是解题的关键.9、C【解题分析】
设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.【题目详解】设这个多边形的边数为n,由题意得解得:故选C.【题目点拨】本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.10、D【解题分析】
过点M作于点F,根据在边长为2的菱形ABCD中,,M为AD中点,得到,从而得到,,进而利用锐角三角函数关系求出FM的长,利用勾股定理求得CM的长,即可得出EC的长.【题目详解】如图所示:过点M作于点F,在边长为2的菱形ABCD中,,M为AD中点,,,,,,,∵AM=ME=1,.故选D.【题目点拨】此题主要考查了菱形的性质以及折叠的性质等知识,翻折变换折叠问题实质上就是轴对称变换,解题的关键是从题目中抽象出直角三角形,利用勾股定理计算求解.二、填空题(每小题3分,共24分)11、1.【解题分析】
据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【题目详解】如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴DF+FE+DEBCABAC(AB+BC+CA)16=1.故答案为:1.【题目点拨】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.12、10.8【解题分析】
根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【题目详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3,
则这组数据的方差是:[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8故答案为:10.8【题目点拨】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、【解题分析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【题目详解】连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴∴则∵FE=BE=EC,∴∴故答案为【题目点拨】考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.14、1【解题分析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【题目详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【题目点拨】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.15、或【解题分析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【题目详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【题目点拨】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.16、【解题分析】
由直线与直线平行,可知k=1,然后把代入中即可求解.【题目详解】∵直线与直线平行,∴k=1,把代入,得1+b=4,∴b=1,∴.故答案为:.【题目点拨】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.17、3【解题分析】原式=1318、【解题分析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【题目详解】解:解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.【题目点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题(共66分)19、(1);(2);(3)详见解析.【解题分析】试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;
(2)根据规律写出含n的式子即可;
(3)结合二次根式的性质进行化简求解验证即可.试题解析:(1)(2)(3)故答案为(1)20、(1);(2)y=-x+1.【解题分析】
(1)作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(2)根据平行四边形的性质可得出DE⊥OC,利用等腰三角形的三线合一可得出△OEC为等腰三角形,结合OE⊥AC可得出△OEC为等腰直角三角形,根据等腰直角三角形的性质可得出点C、D的坐标,由点B、D的坐标,利用待定系数法即可求出直线BD的解析式.【题目详解】(1)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,6),∵BD∥AC,BD与AC的距离等于2,∴BF=2,∵在Rt△ABF中,∠AFB=90°,AB=1,点G为AB的中点,∴FG=BG=AB=2,∴△BFG是等边三角形,∠ABF=60°,∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=8,∴x=,∵点C在x轴的正半轴上,∴点C的坐标为(,0);(2)如图:∵四边形ABDE为平行四边形,∴DE∥AB,∴DE⊥OC,∵点D为OC的中点,∴△OEC为等腰三角形,∵OE⊥AC,∴△OEC为等腰直角三角形,∴∠C=15°,∴点C的坐标为(8,0),点D的坐标为(1,0),设直线BD的解析式为y=kx+b(k≠0),将B(0,1)、D(1,0)代入y=kx+b,得:,解得:,∴直线BD的解析式为y=-x+1.【题目点拨】本题考查了三角形的中位线、待定系数法求一次函数解析式、等腰直角三角形、平行四边形的性质以及勾股定理,解题的关键是:(1)牢记30°角所对的直角边为斜边的一半;(2)根据平行四边形的性质结合等腰直角三角形的性质求出点C、D的坐标.21、(1)6;(2)见详解.【解题分析】
(1)从图3中可以看出射线OQ前面6秒扫过的面积为9,则可以得到12×12AD∙AD=9(2)仔细观察函数图象可知点P点Q是在点C处相遇,并由(1)中得到的正方形边长可求得,相遇前后P,Q的速度,再画出图形列出式子求解即可.【题目详解】解:(1)由图3可知△OCD的面积=9.∵O是AD的中点,∴OD=12∵四边形ABCD是正方形,∴AD=CD,∠ODC=90°,∴12AD∙1解得:AD=6.故答案为6.(2)观察图2和图3可知P,Q两点是在点C处相遇,且相遇前P,Q的速度分别为2和1.相遇后P,Q的运动速度分别为1和3.①当6≤t<8时,如图1,S=正方形的面积-△POD的面积-梯形OABQ的面积.∵PC=t-6,CQ=3(t-6)=3t-18.∴PD=12-t,BQ=24-3t.∴S=36-32=36-18+32=212②当8≤t≤10时,如图2,S=正方形的面积-△POD的面积-△AOQ的面积.∵PC=t-6,BQ=3(t-8)=3t-24,∴PD=12-t,AQ=30-3t.∴S=36-32(12-t)-3=36-18+32t-45+9=6t-27.当10<t≤12时,如图3.S=正方形的面积-△POD的面积.∵PC=t-6,∴PD=12-t,∴S=36-32=36-18+32=32综上所述,P,Q相遇后∠POQ在正方形中所夹图形面积S与时间t的函数关系式为:当6≤t<8时S=212t-63;当8≤t≤10时,S=6t-27;当10<t≤12时S=3【题目点拨】本题为一次函数综合运用题,涉及到图形的面积计算等,此类题目关键是,弄清楚不同时间段动点所在的位置,确定线段相应的长度,进而求解.22、58°.【解题分析】
由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.【题目详解】∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+20°=58°.【题目点拨】此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.23、(1)x=-(2)x=1(3)x1=6,x2=0(4)x1=2,x2=-【解题分析】
(1)根据分式方程的解法去分母化为整式方程,故可求解;(2)根据分式方程的解法去分母化为整式方程,故可求解;(3)根据直接开平方法即可求解(4)先化为一般式,再利用公式法即可求解.【题目详解】(1)x=-经检验,x=-是原方程的解;(2)x-5=8x-12-7x=-7x=1经检验,x=1是原方程的解;(3)x-3=±3x-3=3,x-3=-3x1=6,x2=0;(4)这里a=2,b=-1,c=-6∴△=b2-4ac=1+4×2×6=49>0∴x==∴x1=2,x2=-.【题目点拨】此题主要考查分式方程与一元二次方程的求解,解题的关键是熟知其解法.24、(2)①5,-4或2;②(-2,-2);(2)k≥2【解题分析】
(2)①先写出函数的-2分函数,代入即可,注意,函数值时-3时分两种情况代入;②先写出函数的-2分函数,分两种情况和双曲线解析式联立求解即可;(2)先写出函数的0分函数,画出图象,根据图象即可求得.【题目详解】解:(2)①y=x+2的-2分函数为:当x≤-2时,y[-2]=x+2;当x>-2时,y[-2]=-x-2.当x=4时,y[-2]=-4-2=-5,当y[-2]=-3时,如果x≤-2,则有,x+2=-3,∴x=-4,如果x>-2,则有,-x-2=-3,∴x=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版车队合作协议3篇
- 数码摄像机购销合同书3篇
- 改善企业运营承诺书3篇
- 方协议毁约流程3篇
- 教育学实习生合作协议3篇
- 方联合体投标协议书3篇
- 温室大棚环境无线监控系统设计毕业论文开题报告
- 物业公司高层管理合同
- 采摘园洗车场租赁合同
- 物流运输协调协议
- 动车运用所施工组织设计
- 新闻媒体编辑与发布规范流程
- 03S702钢筋混凝土化粪池-标准图集
- 统编版 七年级上册 第五单元 活动·探究 任务一 体会人与动物的关系 20 狼(教学设计)
- 特朗普第二任总统任期的国际经济影响-2024-10-宏观大势
- 2024年高中语文课内文言文复习《项脊轩志》课后练习、探究性阅读含答案解析翻译
- 2024年全国统一高考数学试卷(新高考Ⅰ)含答案
- 2025届浙江省杭州市学军中学高三下学期联合考试物理试题含解析
- 教科版五年级上册科学全册教学反思
- 2024年部编版七年级上册语文期末专项训练:文言文对比阅读
- 护理纠纷防范及护患沟通考核试题
评论
0/150
提交评论