版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届宁夏石嘴山市三中高考仿真模拟数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直2.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.3.已知实数满足则的最大值为()A.2 B. C.1 D.04.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.5.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.6.已知函数为奇函数,则()A. B.1 C.2 D.37.已知函数,若,则的最小值为()参考数据:A. B. C. D.8.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知为定义在上的偶函数,当时,,则()A. B. C. D.10.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.11.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.212.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.14.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____15.已知随机变量服从正态分布,,则__________.16.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望18.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?19.(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.20.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.21.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.22.(10分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.2、A【解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.3、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.4、B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.5、A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.6、B【解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.7、A【解析】
首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,,令,解得,所以,且,化简得,所以,构造函数,.构造函数,,所以在区间上递减,而,,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.8、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.9、D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.10、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.11、C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.12、C【解析】令圆的半径为1,则,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,可行域如图,直线与圆相切时取最大值,由14、2【解析】
先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.15、0.22.【解析】
正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.16、【解析】
由已知条件得出关于首项和公差的方程组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.【详解】设等差数列的公差为,由,解得,.所以,当时,取得最大值,对任意都有成立,则为数列的最大值,因此,.故答案为:.【点睛】本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)分布列见解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)(2)应该购买21件易耗品【解析】
(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解.【详解】(1)由题中的表格可知A型号的设备一个月使用易耗品的件数为6和7的频率均为;B型号的设备一个月使用易耗品的件数为6,7,8的频率分别为;C型号的设备一个月使用易耗品的件数为7和8的频率分别为;设该单位一个月中三台设备使用易耗品的件数分别为,则,,,设该单位三台设备一个月中使用易耗品的件数总数为X,则而,,故,即该单位一个月中三台设备使用的易耗品总数超过21件的概率为.(2)以题意知,X所有可能的取值为;;;由(1)知,,若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;;若该单位在肋买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;,所以该单位在购买设备时应该购买21件易耗品【点睛】本题考查独立事件的概率,考查离散型随机变量的分布列和期望,考查数据处理能力.19、(1);(2)20.【解析】
(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值为:0,10,20,30,1.分别求出取各个值时的概率,即可求出分布列和数学期望.【详解】(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,所以1名顾客摸球2次摸奖停止的概率.(2)的可能取值为:0,10,20,30,1.,∴随机变量X的分布列为:X01020301P数学期望.【点睛】本题主要考查离散型随机变量的分布列和数学期望,属于中档题.20、(1)(2)【解析】
(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.21、(1);(2)见解析【解析】
(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB 1502-T 027-2024多晶硅生产单位产品能源消耗限额
- 2024-2025学年江苏省百校高三上学期10月联考物理试卷和答案
- 农药制造中的新型啶类技术研究考核试卷
- 信息系统的旅游信息管理与在线预订考核试卷
- 水利工程在农村教育和文化事业发展中的支撑作用考核试卷
- 制鞋业电商渠道开拓与运营考核试卷
- 智能家居在家庭社交中的创新应用与实践考核试卷
- 辽宁省沈阳市沈北新区2024-2025学年四年级上学期期中英语试卷
- 危险品包装中的可降解与可回收材料创新考核试卷
- 城市轨道交通的智慧出行与一体化应用研究考核试卷
- 经营分析报告案例-麦肯锡风格
- 难治性高血压-课件
- 烟花爆竹经营单位主要负责人安全培训
- 2023春国开会计实务专题形考任务1-4题库及答案汇总
- 可疑值的取舍-Q检验法
- 生物信息学(上海海洋大学)知到章节答案智慧树2023年
- 核磁共振T临床应用
- 文件与文件夹测试题(含参考答案)
- 电工安全培训课件
- 维修工程技术标
- 《长津湖》电影赏析PPT
评论
0/150
提交评论