




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市第一中学2024届数学高二下期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的图像大致为A. B. C. D.2.已知函数,关于的不等式只有两个整数解,则实数的取值范围是()A. B. C. D.3.若,则m等于()A.9 B.8 C.7 D.64.8名学生和2位教师站成一排合影,2位教师不相邻的排法种数为()A. B. C. D.5.已知函数的最小正周期为,且其图象向右平移个单位后得到函数的图象,则()A. B. C. D.6.函数的图象在处的切线方程为()A. B. C. D.7.已知全集,集合,则()A. B. C. D.8.已知直线y=x+1与曲线y=A.1B.2C.-1D.-29.设,命题“若,则方程有实根”的逆否命题是A.若方程有实根,则 B.若方程有实根,则C.若方程没有实根,则 D.若方程没有实根,则10.设随机变量X的分布列如下:则方差D(X)=().A. B. C. D.11.如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线与所围成阴影区域内的概率是()A.B.C.D.12.是虚数单位,则的虚部是()A.-2 B.-1 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_________.14.已知,则________.(用含的式子表示)15.命题:,使得成立;命题,不等式恒成立.若命题为真,则实数的取值范围为___________.16.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,1.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(a∈R).(1)当时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)<x2在(1,+∞)上恒成立,试求18.(12分)已知关于的方程x2+kx+k2﹣2k=0有一个模为的虚根,求实数k的值.19.(12分)已知二项式的展开式的第项为常数项(1)求的值;(2)求的值20.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.(1)请将列联表补充完整;患心肺疾病不患心肺疾病合计男5女10合计50(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(参考公式,其中)21.(12分)已知的展开式中的二项式系数之和比各项系数之和大(1)求展开式所有的有理项;(2)求展开式中系数最大的项.22.(10分)设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【题目详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【题目点拨】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.2、C【解题分析】试题分析:,∴在上单调递增,上单调递减,∴,又∵,,不等式只有两个整数解,∴,即实数的取值范围是故选C.【考点】本题主要考查导数的运用.3、C【解题分析】分析:根据排列与组合的公式,化简得出关于的方程,解方程即可.详解:,,即,解得,故选C.点睛:本题主要考查排列公式与组合公式的应用问题,意在考查对基本公式掌握的熟练程度,解题时应熟记排列与组合的公式,属于简单题.4、A【解题分析】
本题选用“插空法”,先让8名学生排列,再2位教师教师再8名学生之间的9个位置排列.【题目详解】先将8名学生排成一排的排法有种,再把2位教师插入8名学生之间的9个位置(包含头尾的位置),共有种排法,故2位教师不相邻的排法种数为种.故选A.【题目点拨】本题考查排列组合和计数原理,此题也可用间接法.特殊排列组合常用的方法有:1、插空法,2、捆绑法.5、C【解题分析】
利用函数的周期求出的值,利用逆向变换将函数的图象向左平行个单位长度,得出函数的图象,根据平移规律得出的值.【题目详解】由于函数的周期为,,则,利用逆向变换,将函数的图象向左平移个单位长度,得到函数的图象,所以,因此,,故选:C.【题目点拨】本题考查正弦型函数周期的计算,同时也考查了三角函数图象的平移变换,本题利用逆向变换求函数解析式,可简化计算,考查推理能力与运算求解能力,属于中等题.6、A【解题分析】
先求出切点的坐标和切线的斜率,再写出切线的方程.【题目详解】当x=1时,f(1)=-2+0=-2,所以切点为(1,-2),由题得,所以切线方程为y+2=-1·(x-1),即:故选:A【题目点拨】本题主要考查导数的几何意义和切线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、D【解题分析】
首先解出集合,,由集合基本运算的定义依次对选项进行判定。【题目详解】由题可得,;所以,则选项正确;故答案选D【题目点拨】本题考查一元二次方程、绝对值不等式的解法以及集合间基本运算,属于基础题。8、B【解题分析】设切点P(x0,y∴x9、D【解题分析】
根据已知中的原命题,结合逆否命题的定义,可得答案.【题目详解】命题“若,则方程有实根”的逆否命题是命题“若方程没有实根,则”,故选:D.【题目点拨】本题考查的知识点是四种命题,难度不大,属于基础题.10、B【解题分析】分析:先求出的值,然后求出,利用公式求出详解:故选点睛:本题考查了随机变量的分布列的相关计算,解答本题的关键是熟练掌握随机变量的期望与方差的计算方法11、B【解题分析】试题分析:图中阴影面积可以用定积分计算求出,即,正方形OABC的面积为1,所以根据几何概型面积计算公式可知,点落到阴影区域内的概率为。考点:1.定积分的应用;2.几何概型。12、B【解题分析】
根据复数的除法运算把复数化为代数形式后可得其虚部.【题目详解】由题意得,所以复数的虚部是.故选B.【题目点拨】本题考查复数的运算和复数的基本概念,解答本题时容易出现的错误是认为复数的虚部为,对此要强化对基本概念的理解和掌握,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】分析:由频率分布直方图,得每天在校平均开销在[50,60]元的学生所点的频率为0.3,由此能求出每天在校平均开销在[50,60]元的学生人数.详解:由频率分布直方图,得:每天在校平均开销在[50,60]元的学生所点的频率为:1﹣(0.01+0.024+0.036)×10=0.3∴每天在校平均开销在[50,60]元的学生人数为500×0.3=1.故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力.14、【解题分析】
通过寻找,与特殊角的关系,利用诱导公式及二倍角公式变形即可.【题目详解】因为,即,所以,所以,所以,又.【题目点拨】本题主要考查诱导公式和二倍角公式的应用,意在考查学生分析解决问题的能力.15、【解题分析】分析:命题为真,则都为真,分别求出取交集即可.详解:命题为真,则都为真,对,,使得成立,则;对,,不等式恒成立,则,又(当且仅当时取等),,故.故答案为.点睛:本题考查函数的性质,复合命题的真假判定方法,考查了推理能力与计算能力,属于中档题.16、2【解题分析】
利用平均数、方差的概念列出关于的方程组,解方程即可得到答案.【题目详解】由题意可得:,设,,则,解得,∴故答案为2.【题目点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)a=-e【解题分析】分析:(1)f(x)的定义域为(0,+∞),f′(x)=+=,由此利用导数性质能求出f(x)在(0,+∞)上是单调递增函数;(2)由(1)根据a的取值范围分类讨论,由此利用导数性质能求出a;(3)由fx<x2⇔详解:(1)由题意知f(x)的定义域为(0,+∞),且f′(x)=+=.∵a>0,∴f′(x)>0,故f(x)在(0,+∞)上是单调递增函数.(2)由(1)可知,f′(x)=.①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,∴f(x)min=f(1)=-a=,∴a=-(舍去).②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,∴f(x)min=f(e)=1-=,∴a=-(舍去).③若-e<a<-1,令f′(x)=0得x=-a,当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,∴f(x)min=f(-a)=ln(-a)+1=,∴a=-.综上所述,a=-.(3)∵f(x)<x2,∴lnx-<x2.又x>0,∴a>xlnx-x3.令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2,h′(x)=-6x=.∵x∈(1,+∞)时,h′(x)<0,∴h(x)在(1,+∞)上是减函数.∴h(x)<h(1)=-2<0,即g′(x)<0,∴g(x)在(1,+∞)上也是减函数.g(x)<g(1)=-1,∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.故a的取值范围是[-1,+∞).点睛:本题考查函数的单调区间和实数取值范围的求法,解题时认真审题,注意分类讨论思想和导数性质的合理应用.18、1【解题分析】分析:设两根为、,则,,得,利用韦达定理列方程可求得的值,结合判别式小于零即可得结果.详解:由题意,得或,设两根为、,则,,得,.所以.点睛:本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用,属于中档题.19、(1).(2)0.【解题分析】
分析:(1)利用二项式展开式的通项公式求出展开式的通项,令的指数为零,即可求出的值;(2)结合(1)化为.详解:(1)二项式通式因为第项为常数项,所以,解得(2)因为,所以当时,所以原式点睛:本题主要考查二项展开式定理的通项与系数以及二项式的应用,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.20、(1)见解析(2)有97.5%的把握认为患心肺疾病与性别有关.(3)见解析,【解题分析】
(1)由题意可知:在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,即可求得患心肺疾病的为20人,即可完成列联表;(2)再代入公式计算得出,与5.024比较即可得出结论;(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为,则服从超几何分布,即可得到的分布列和数学期望.【题目详解】解:(1)列联表补充如表所示患心肺疾病不患心肺疾病合计男10515女102535合计203050(2)∵∴∵∴有97.5%的把握认为患心肺疾病与性别有关.(3)根据题意,的值可能为0,1,2,3,,,,分布列如表:0123则【题目点拨】本题考查独立性检验的应用问题,考查随机变量得分布列和数学期望,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.21、(1);(2)【解题分析】
令可得展开式的各项系数之和,而展开式的二项式系数之和为,列方程可求的值及通项,(1)为整数,可得的值,进而可得展开式中所有的有理项;(2)假设第项最大,且为偶数,则,解出的值,进而可求得系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年计算机基础考试理论试题及答案
- 2024年计算机基础考生心态调整建议及试题和答案
- 汽车冷却系统检测与维修试题及答案
- 2024年汽车长期维护需要的技巧试题及答案
- 湖北省武汉市青山区2023-2024学年八年级下学期期中质量检测英语试题(含答案)
- 二手车评估师考试复习策略及试题及答案
- 2024年二手车评估师战略规划与考试试题及答案
- CPBA考试技术点试题及答案
- 美容师行业独特之处与发展方向试题及答案
- 2024年美容师考试相关法律法规知识试题及答案
- 2025-2030国内儿童绘本行业市场发展分析及发展前景与投资机会研究报告
- GB/T 45344-2025建筑用装配式预制燃气管道通用技术条件
- 2025年美丽中国第六届全国国家版图知识竞赛题库及答案(中小学组)
- 2024-2025学年北师大版数学七年级下第一次月考模拟练习(含答案)
- 2025年广西职业院校技能大赛高职组(智慧物流赛项)参考试题库及答案
- 2024年内蒙古各地区中考语文文言文阅读试题(含答案解析与翻译)
- 2025年春新北师大版数学一年级下册课件 三 20以内数与减法 第3课时 凑数游戏
- 劳务外包服务投标方案(技术标)
- 《义务教育信息科技教学指南》有效应用策略
- 2024年低碳生活科普知识竞赛题库
- 2025-2030全球藻源虾青素行业调研及趋势分析报告
评论
0/150
提交评论