甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题含解析_第1页
甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题含解析_第2页
甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题含解析_第3页
甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题含解析_第4页
甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市第五十八中2024届高二数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B. C. D.2.曲线在处的切线与直线垂直,则()A.-2 B.2 C.-1 D.13.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.4.已知实数,满足,则与的关系是()A. B. C. D.5.设复数(是虚数单位),则()A.i B. C. D.6.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.7.空间四边形中,,,,点在线段上,且,点是的中点,则()A. B. C. D.8.下列命题中真命题的个数是()①若样本数据,,…,的方差为16,则数据,,…,的方差为64;②“平面向量,夹角为锐角,则”的逆命题为真命题;③命题“,”的否定是“,”;④若:,:,则是的充分不必要条件.A.1 B.2 C.3 D.49.已知,且,则的最小值是()A.1 B. C. D.310.已知命题,则命题的否定为()A. B.C. D.11.若复数满足,则复数为()A. B. C. D.12.已知函数,,若,,则的大小为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(广东深圳市高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即的面积,其中分别为内角的对边.若,且,则的面积的最大值为__________.14.等差数列中,若,则___________.15.如图,已知四面体的棱平面,且,其余的棱长均为2,有一束平行光线垂直于平面,若四面体绕所在直线旋转.且始终在平面的上方,则它在平面内影子面积的最小值为________.16.有5条线段,其长度分别为3,4,5,7,9,现从中任取3条,则能构成三角形的概率是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆与椭圆的离心率相同.(1)求的值;(2)过椭圆的左顶点作直线,交椭圆于另一点,交椭圆于两点(点在之间).①求面积的最大值(为坐标原点);②设的中点为,椭圆的右顶点为,直线与直线的交点为,试探究点是否在某一条定直线上运动,若是,求出该直线方程;若不是,请说明理由.18.(12分)如图,在三棱锥中,底面,且,,,、分别是、的中点.(1)求证:平面平面;(2)求二面角的平面角的大小.19.(12分)某种产品的广告费用支出(万元)与销售(万元)之间有如下的对应数据:245683040605070若由资料可知对呈线性相关关系,试求:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)据此估计广告费用支出为10万元时销售收入的值.(参考公式:,.)20.(12分)在一次考试中,某班级50名学生的成绩统计如下表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.分数697374757778798082838587899395合计人数24423463344523150经计算,样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为X,并根据以下不等式进行评判:①;②;③.评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求和的直角坐标方程;(2)已知直线与轴交于点,且与曲线交于两点,求的值.22.(10分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设点是轨迹上位于第一象限且在直线右侧的动点,若以为圆心,线段为半径的圆与有两个公共点.试求圆在右焦点处的切线与轴交点纵坐标的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积2、B【解题分析】分析:先求导,然后根据切线斜率的求法得出切线斜率表达式,再结合斜率垂直关系列等式求解即可.详解:由题可知:切线的斜率为:由切线与直线垂直,故,故选B.点睛:考查切线斜率的求法,直线垂直关系的应用,正确求导是解题关键,注意此题导数求解时是复合函数求导,属于中档题.3、A【解题分析】

根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【题目详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【题目点拨】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.4、C【解题分析】

设,,则,对进行平方展开化简得,代入得,两式相加即可.【题目详解】设,,则且,等式两边同时平方展开得:,即令等式中,化简后可得:两式相加可得故选:C【题目点拨】本题考查了代数式的计算化简求值,考查了换元法,属于中档题5、D【解题分析】

先化简,结合二项式定理化简可求.【题目详解】,,故选D.【题目点拨】本题主要考查复数的运算和二项式定理的应用,逆用二项式定理要注意配凑出定理的结构形式.6、B【解题分析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.7、C【解题分析】分析:由空间向量加法法则得到,由此能求出结果.详解:由题空间四边形中,,,,点在线段上,且,点是的中点,则故选C.点睛:本题考查向量的求法,考查空间向量加法法则等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8、C【解题分析】分析:对四个命题逐一分析即可.详解:对于①,由方差的性质得:则数据,,…,的方差为,故正确;对于②,逆命题为平面向量,满足,则向量,夹角为锐角,是假命题,故错误;对于③,命题“,”的否定是“,”,正确;对于④,,,是的充分不必要条件,故正确.故选C.点睛:本题主要考查命题的真假判断,涉及知识点较多,综合性较强,但难度不大.9、B【解题分析】

利用柯西不等式得出,于此可得出的最小值。【题目详解】由柯西不等式得,则,当且仅当时,等号成立,因此,的最小值为,故选:B.【题目点拨】本题考查利用柯西不等式求最值,关键在于对代数式朝着定值条件等式去进行配凑,同时也要注意等号成立的条件,属于中等题。10、D【解题分析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.11、D【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由,

得.

故选D.【题目点拨】本题考查复数代数形式的乘除运算,是基础的计算题.12、C【解题分析】

对函数求导,确定函数的单调性,然后确定这三个数之间的大小关系,最后利用函数的单调性判断出的大小关系.【题目详解】,所以是上的增函数.,所以,故本题选C.【题目点拨】本题考查了利用导数判断出函数的单调性,然后判断函数值大小关系.解决本题的重点是对指数式、对数式的比较,关键是对指数函数、对数函数的单调性的理解.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题设可知,即,由正弦定理可得,所以,当时,,故填.14、10.【解题分析】

直接由等差数列的通项公式结合已知条件列式求解的值.【题目详解】在等差数列中,由,,,且,所以,所以.故答案为:10.【题目点拨】本题考查等差数列的通项公式,考查用基本量法求.15、【解题分析】

在四面体中找出与垂直的面,在旋转的过程中在面内的射影始终与垂直求解.【题目详解】和都是等边三角形,取中点,易证,,即平面,所以.设在平面内的投影为,则在四面体绕着旋转时,恒有.因为平面,所以在平面内的投影为.因此,四面体在平面内的投影四边形的面积要使射影面积最小,即需最短;在中,,,且边上的高为,利用等面积法求得,边上的高,且,所以旋转时,射影的长的最小值是.所以【题目点拨】本题考查空间立体几何体的投影问题,属于难度题.16、【解题分析】

从5条线段中任取3条共有10种情况,将能构成三角形的情况数列出,即可得概率.【题目详解】从5条线段中任取3条,共有种情况,其中,能构成三角形的有:3,4,5;3,5,7;3,7,9;4,5,7;4,7,9;5,7,9.共6种情况;即能构成三角形的概率是,故答案为:【题目点拨】本题考查了古典概型的概率公式,注意统计出满足条件的情况数,再除以总情况数即可,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②点在定直线上【解题分析】

(1)利用两个椭圆离心率相同可构造出方程,解方程求得结果;(2)①当与轴重合时,可知不符合题意,则可设直线的方程:且;设,,联立直线与椭圆方程可求得,则可将所求面积表示为:,利用换元的方式将问题转化为二次函数的最值的求解,从而求得所求的最大值;②利用中点坐标公式求得,则可得直线的方程;联立直线与椭圆方程,从而可求解出点坐标,进而得到直线方程,与直线联立解得坐标,从而可得定直线.【题目详解】(1)由椭圆方程知:,离心率:又椭圆中,,,又,解得:(2)①当直线与轴重合时,三点共线,不符合题意故设直线的方程为:且设,由(1)知椭圆的方程为:联立方程消去得:即:解得:,,又令,此时面积的最大值为:②由①知:直线的斜率:则直线的方程为:联立方程消去得:,解得:则直线的方程为:联立直线和的方程,解得:点在定直线上运动【题目点拨】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的三角形面积最值的求解、椭圆中的定直线问题;解决定直线问题的关键是能够通过已知条件求得所求点坐标中的定值,从而确定定直线;本题计算量较大,对于学生的运算与求解能力有较高的要求.18、(Ⅰ)证明过程详见解析;(Ⅱ).【解题分析】

(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.【题目详解】(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平面平面BCD.(Ⅱ)又设平面BDE的法向量为,则,即所以又因平面SBD的法向量为所以由图可得二面角为锐角,所以二面角的平面角的大小为.考点:平面与平面的垂直的证明‚二面角大小的求法.19、(1);(2).【解题分析】分析:(1)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再做出的值,得到线性回归方程.

(3)把所给的的值代入线性回归方程,求出的值,这里的的值是一个预报值,或者说是一个估计值.详解:(1)由题目条件可计算出,,,,故y关于x的线性回归方程为.(2)当时,,据此估计广告费用支出为10万元时销售收入为万元.点睛:本题考查线性回归方程的求法和应用,本题解题的关键是看出这组变量是线性相关的,进而正确运算求出线性回归方程的系数,属基础题.20、(1)该份试卷应被评为合格试卷;(2)见解析,1.2.【解题分析】

(1)根据频数分布表,计算出,的值,由此判断出“该份试卷为合格试卷”;(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【题目详解】解:(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷;(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3,,,,,所以随机变量的分布列为:0123故.【题目点拨】本题考查了正态分布的概念,考查频率的计算,超几何分布的分布列及其数学期望的计算,属于中档题.21、(1)直线的直角坐标方程为,曲线的普通方程为(2)【解题分析】

(1)利用极坐标化直角坐标的公式求直线l的直线坐标方程,消参求出曲线的普通方程;(2)直线的参数方程为(为参数),代入,得,再利用直线参数方程t的几何意义求的值.【题目详解】解:(1)因为直线的极坐标方程为,所以直线的直角坐标方程为.因为曲线的参数方程为(为参数),所以曲线的普通方程为.(2)由题可知所以直线的参数方程为(为参数),代入,得,设两点所对应的参数分别为,即,,【题目点拨】本题主要考查极坐标参数方程和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论