版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西桂林市、贺州市、崇左市数学高二第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“函数在区间内单调递减”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也必要条件2.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.3.下面几种推理过程是演绎推理的是()A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°C.由平面三角形的性质,推测空间四边形的性质D.在数列{an}中,a1=1,an=12(an-1+1an-1)(n≥2),由此归纳出{a4.设复数满足,则()A. B. C. D.5.已知函数与函数,下列选项中不可能是函数与图象的是A. B.C. D.6.甲球与某立方体的各个面都相切,乙球与这个立方体的各条棱都相切,丙球过这个立方体的所有顶点,则甲、乙、丙三球的半径的平方之比为()A.1∶2∶3 B.1∶∶C.1∶∶ D.1∶2∶37.若实轴长为2的双曲线上恰有4个不同的点满足,其中,,则双曲线C的虚轴长的取值范围为()A. B. C. D.8.由曲线,所围成图形的面积是()A. B. C. D.9.给出下列四个命题,其中真命题的个数是()①回归直线y=bx+a②“x=6”是“x2③“∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”也是真命题.A.0B.1C.2D.310.将函数的图形向左平移个单位后得到的图像关于轴对称,则正数的最小正值是()A. B. C. D.11.已知函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.12.如图,已知函数的图象关于坐标原点对称,则函数的解析式可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是________.14.已知m>0,函数.若存在实数n,使得关于x的方程f2(x)-(2n+1)f(x)+n2+n=0有6个不同的根,则m的取值范围是________.15.如图,正方体中,E为线段的中点,则AE与所成角的余弦值为____.16.已知曲线在点处的切线为,则点的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程点是曲线:上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点逆时针旋转得到点,设点的轨迹为曲线.(1)求曲线,的极坐标方程;(2)射线,()与曲线,分别交于两点,设定点,求的面积.18.(12分)某中学将444名高一新生分成水平相同的甲、乙两个“平行班”,每班54人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于94分者为“成绩优秀”.根据频率分布直方图填写下面4×4列联表,并判断能否在犯错误的概率不超过4.45的前提下认为:“成绩优秀”与教学方式有关.
甲班(A方式)
乙班(B方式)
总计
成绩优秀
成绩不优秀
总计
附:K4=n(ad-bc)P(K4≥k)
4.45
4.45
4.44
4.45
4.445
k
4.444
4.474
4.746
4.844
5.444
19.(12分)已知函数,.(1)若函数与的图像上存在关于原点对称的点,求实数的取值范围;(2)设,已知在上存在两个极值点,且,求证:(其中为自然对数的底数).20.(12分)如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.21.(12分)函数,.(Ⅰ)求函数的极值;(Ⅱ)若,证明:当时,.22.(10分)已知复数,(其中是虚数单位).(1)当为实数时,求实数的值;(2)当时,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用二次函数的单调性可得a的取值范围,再利用简易逻辑的判定方法即可得出.【题目详解】函数f(x)=x2﹣2ax﹣2=(x﹣a)2﹣a2﹣2在区间(﹣∞,2]内单调递减,∴2≤a.∴“a>3”是“函数f(x)=x2﹣2ax﹣2在区间(﹣∞,2]内单调递减”的充分非必要条件.故选:A.【题目点拨】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2、B【解题分析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.3、B【解题分析】演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.
A选项“高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人”是归纳推理;故错;
B选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°”,故正确;
C选项“由平面三角形的性质,推出空间四边形的性质”是类比推理;故错;
D选项“在数列an中,a1=1,an=12(an-1+1an-14、D【解题分析】分析:先根据复数除法得,再根据复数的模求结果.详解:因为,所以,因此选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为5、D【解题分析】
对进行分类讨论,分别作出两个函数图象,对照选项中的图象,利用排除法,可得结果.【题目详解】时,函数与图象为:故排除;,令,则或,当时,0为函数的极大值点,递减,函数与图象为:故排除;当时,0为函数的极小值点,递增,函数与图象为:故排除;故选.【题目点拨】本题考查的知识点是三次函数的图象和性质,指数函数的图象和性质,分类讨论思想,难度中档.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、A【解题分析】
设立方体为以2为边长的正方体,分别求出甲乙丙的半径,即可得出答案。【题目详解】设立方体为以2为边长的正方体,则,,所以【题目点拨】设立方体为以2为边长的正方体,分别求出甲乙丙的半径,即可得出答案。7、C【解题分析】
设点,由结合两点间的距离公式得出点的轨迹方程,将问题转化为双曲线与点的轨迹有个公共点,并将双曲线的方程与动点的轨迹方程联立,由得出的取值范围,可得出答案.【题目详解】依题意可得,设,则由,得,整理得.由得,依题意可知,解得,则双曲线C的虚轴长.8、A【解题分析】
先计算交点,再根据定积分计算面积.【题目详解】曲线,,交点为:围成图形的面积:故答案选A【题目点拨】本题考查了定积分的计算,意在考查学生的计算能力.9、B【解题分析】归直线y=bx+a②“x=6”是“x2③∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”当p,q都真时是假命题.不正确10、D【解题分析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,得出结论.【题目详解】解:将函数的图形向左平移个单位后,可得函数的图象,再根据得到的图象关于轴对称,可得,即,令,可得正数的最小值是,故选:D.【题目点拨】本题主要考查函数的图象变换规律,三角函数的图象的对称性,属于基础题.11、B【解题分析】
根据奇函数的定义或性质求出,然后可求出导函数,得切线斜率,从而得切线方程【题目详解】∵是奇函数,∴,∴,,是奇函数,,,,切线方程为,即.故选B.【题目点拨】本题考查导数的几何意义,考查函数的奇偶性,本题难度一般.12、C【解题分析】
根据函数图像的对称性,单调性,利用排除法求解.【题目详解】由图象知,函数是奇函数,排除,;当时,显然大于0,与图象不符,排除D,故选C.【题目点拨】本题主要考查了函数的图象及函数的奇偶性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④.【解题分析】
①根据古典概型概率公式结合组合知识可得结论;②根据二项分布的方差公式可得结果;③根据条件概率进行计算可得到第二次再次取到红球的概率;④根据对立事件的概率公式可得结果.【题目详解】①从中任取3个球,恰有一个白球的概率是,故①正确;②从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故②正确;③从中不放回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故③错误;④从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故④正确,故答案为①②④.【题目点拨】本题主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.14、.【解题分析】分析:作出的图象,依题意可得4m-m2+1<m,解之即可.详解:作出f(x)的图象如图所示.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,f2(x)-(2n+1)f(x)+n2+n=0,[f(x)-n][f(x)-(n+1)]=0。f(x)=n或f(x)=n+1∴要使方程f2(x)-(2n+1)f(x)+n2+n=0有6个不同的根,则4m-m2+1<m,即m2-3m-1>0.又m>0,解得m>.故答案为:.点睛:本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析到4m-m2+1<m是难点.15、;【解题分析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出AE与CD1所成角的余弦值.【题目详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A(2,0,0),E(2,2,1),C(0,2,0),D1(0,0,2),(0,2,1),(0,﹣2,2),设AE与CD1所成角为θ,则cosθ,∴AE与CD1所成角的余弦值为.故答案为.【题目点拨】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16、.【解题分析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,,,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解题分析】试题分析:(Ⅰ)由相关点法可求曲线的极坐标方程为.(Ⅱ)到射线的距离为,结合可求得试题解析:(Ⅰ)曲线的极坐标方程为.设,则,则有.所以,曲线的极坐标方程为.(Ⅱ)到射线的距离为,,则.18、列联表见解析,在犯错误的概率不超过的前提下认为:“成绩优秀”与教学方式有关.【解题分析】试题分析:根据频率分布直方图中每个矩形的面积即为概率及概率等于频数比样本容量,求出“成绩优秀”和“成绩不优秀”的人数然后即可填表,再利用附的公式求出的值再与表中的值比较即可得出结论.试题解析:由频率分布直方图可得,甲班成绩优秀、成绩不优秀的人数分别为77,78,乙班成绩优秀、成绩不优秀的人数分别为7,6.
甲班(A方式)
乙班(B方式)
总计
成绩优秀
77
7
6
成绩不优秀
78
6
87
总计
57
57
777
根据列联表中数据,K7的观测值k=100×(12×46-4×38)由于7.767>7.877,所以在犯错误的概率不超过7.75的前提下认为:“成绩优秀”与教学方式有关.考点:独立性检验;频率分布直方图.19、(1)(2)见证明【解题分析】
(1)将问题转化为在有解,即在上有解,通过求解的最小值得到;(2)通过极值点为可求得,通过构造函数的方式可得:;通过求证可证得,进而可证得结论.【题目详解】(1)函数与的图像上存在关于原点对称的点即的图像与函数的图像有交点即在有解,即在上有解设,,则当时,为减函数;当时,为增函数,即(2),在上存在两个极值点,且且,即设,则要证,即证只需证明,即证明设,则则在上单调递增,即【题目点拨】本题考查利用导数来解决函数中的交点问题、恒成立问题,解决问题的关键是能将交点问题转变为能成立问题、不等式的证明问题转化为恒成立的问题,从而通过构造函数的方式,找到合适的函数模型来通过最值解决问题.20、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十电磁感应第3讲电磁感应定律的综合应用练习含答案
- 劳务分包合同价款确定技巧
- 2023年华侨生联考英语作文真题
- 广东省肇庆市高中英语 Unit 4 Astronomy the science of the starsReading教案 新人教版必修3
- 九年级化学上册 第1单元 步入化学殿堂 到实验室去 化学实验基本技能训练(一)教案(2)(新版)鲁教版
- 2024年一年级品生下册《班级小公约》教案 未来版
- 2024年九年级化学上册 5.1 质量守恒定律教案(pdf)(新版)新人教版
- 2024-2025学年高中物理 第一章 动量守恒定律 3 动量守恒定律教案 新人教版选择性必修第一册
- 2024年四年级英语下册 Unit 8 What Can You Do Lesson 2教案 陕旅版(三起)
- 山东济南槐荫区2024-2025学年七年级数学第一学期期中考试试题(含答案)
- 全文《中国式现代化》PPT
- 《红楼梦》深入研读学习任务群设计
- 消毒供应中心专科试题
- 12劳动安全与工业卫生
- 加油站两体系制度
- 医养康养中心设备配备清单
- TRIZ理论-创新方法课件
- 人教版六年级上学期科学4.14《风能和水能》教学课件
- 沥青混凝土面层夜间施工安全专项方案
- 客户满意度及设备使用情况调查表
- 国家开放大学《政治学原理》章节自检自测题参考答案
评论
0/150
提交评论