陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题含解析_第1页
陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题含解析_第2页
陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题含解析_第3页
陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题含解析_第4页
陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省咸阳市乾县第二中学2024届高二数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.2.若,满足约束条件,则的最大值是()A. B. C.13 D.3.某市交通部门为了提高某个十字路口通行效率,在此路口增加禁止调头标识(即车辆只能左转、右转、直行),则该十字路口的行车路线共有()A.24种 B.16种 C.12种 D.10种4.若函数在区间上的图象如图所示,则的值()A. B.C. D.5.在等比数列中,若,,则A. B.C. D.6.若直线把圆分成面积相等的两部分,则当取得最大值时,坐标原点到直线的距离是()A.4B.C.2D.7.若,则等于()A.9 B.8 C.7 D.68.已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a的值为()ξ4a9P0.50.1bA.5 B.6 C.7 D.89.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.10.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.552711.已知为等差数列,,则()A.42 B.40 C.38 D.3612.已知函数,若存在唯一的零点,且,则的取值范围是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有四个零点,则实数的取值范围是__________.14.数列的前n项和记为,则__________.15.函数在点处切线方程为,则=______.16.袋中有形状、大小都相同的4只球,其中2只白球,2只红球,从中一次随机摸出2只球,则这2只球颜色不同的概率是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若存在常数(),使得对定义域内的任意,(),都有成立,则称函数在其定义域上是“利普希兹条件函数”.(1)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;(2)若函数()是“利普希兹条件函数”,求常数的最小值;(3)若()是周期为2的“利普希兹条件函数”,证明:对任意的实数,,都有.18.(12分)在平面直角坐标中,直线的参数方程为(为参数,为常数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于、两点,若,求的值.19.(12分)在平面直角坐标系中,圆C的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.求:(1)圆C的直角坐标方程;(2)圆C的极坐标方程.20.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.21.(12分)甲、乙两班进行“一带一路”知识竞赛,每班出3人组成甲、乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是,设每人回答正确与否相互之间没有影响,用表示甲队总得分.(1)求的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.22.(10分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(Ⅰ)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。2、C【解题分析】

由已知画出可行域,利用目标函数的几何意义求最大值.【题目详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【题目点拨】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.3、C【解题分析】

根据每个路口有种行车路线,一个十字路口有个路口,利用分步乘法计数原理即可求解.【题目详解】每个路口有种行车路线,一个十字路口有个路口,故该十字路口行车路线共有(种)故选:C【题目点拨】本题考查了分布乘法计数原理,属于基础题.4、A【解题分析】

根据周期求,根据最值点坐标求【题目详解】因为,因为时,所以因为,所以,选A.【题目点拨】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.5、A【解题分析】设等比数列的公比为,则,.故选A.6、D【解题分析】依题意可知直线过圆心,代入直线方程得,当且仅当时当好成立,此时原点到直线的距离为.7、B【解题分析】分析:根据组合数的计算公式,即可求解答案.详解:由题意且,,解得,故选B.点睛:本题主要考查了组合数的计算公式的应用,其中熟记组合数的计算公式是解答的关键,着重考查了推理与计算能力.8、C【解题分析】分析:先根据分布列概率和为1得到b的值,再根据E(X)=6.3得到a的值.详解:根据分布列的性质得0.5+0.1+b=1,所以b=0.4.因为E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3,所以a=7.故答案为C.点睛:(1)本题主要考查分布列的性质和随机变量的期望的计算,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①,;②.9、C【解题分析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.10、D【解题分析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。11、B【解题分析】分析:由已知结合等差数列的性质可求,然后由即可求解.详解:,,,,故选:B.点睛:(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.12、C【解题分析】试题分析:当时,,函数有两个零点和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C.考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意可知是偶函数,根据对称性问题转化为直线与曲线有两个交点.【题目详解】因为是偶函数,根据对称性,在上有两个不同的实根,即在上有两个不同的实根,等价转化为直线与曲线有两个交点,而,则当时,,当时,,所以函数在上是减函数,在上是增函数,于是,故故答案为:【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.14、【解题分析】试题分析:由可得:,所以,则数列是等比数列,首项为3,公比为3,所以。考点:数列求通项公式。15、4【解题分析】分析:因为在点处的切线方程,所以,由此能求出.详解:因为在点处切线方程为,,

所以从而.

即答案为4.点睛:本题考查利用导数研究曲线上某点处的切线方程,解题时要认真审题,仔细解答,注意合理地进行等价转化.16、【解题分析】

根据古典概型的概率计算公式求解即可.【题目详解】解:由题意,根据古典概型的概率计算公式得所求概率为,故答案为:.【题目点拨】本题主要考查古典概型的概率计算公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不是;详见解析(2);(3)证明见解析.【解题分析】

(1)利用特殊值,即可验证是不是“利普希兹条件函数”.(2)分离参数,将不等式变为关于,的不等式,结合定义域即可求得常数的最小值;(3)设出的最大值和最小值,根据一个周期内必有最大值与最小值,结合与1的大小关系,及“利普希兹条件函数”的性质即可证明式子成立.【题目详解】(1)函数不是“利普希兹条件函数”证明:函数的定义域为令则所以不满足所以函数不是“利普希兹条件函数”(2)若函数()是“利普希兹条件函数”则对定义域内任意,(),均有即设则,即因为所以所以满足的的最小值为(3)证明:设的最大值为,最小值为在一个周期内,函数值必能取到最大值与最小值设因为函数()是周期为2的“利普希兹条件函数”则若,则成立若,可设,则所以成立综上可知,对任意实数,都成立原式得证.【题目点拨】本题考查了函数新定义及抽象函数性质的应用,对题意正确理解并分析解决问题的方法是关键,属于难题.18、(1);(2)【解题分析】

(1)消去参数可得的普通方程,再根据两边乘以,根据极坐标与直角坐标的关系化简即可.(2)联立直线的参数方程与曲线的直角坐标方程,利用直线参数的几何意义与韦达定理求解即可.【题目详解】解:(1)直线的参数方程为(为参数,为常数),消去参数得的普通方程为.由,得即,整理得.故曲线的直角坐标方程为.(2)将直线的参数方程代入曲线中得,于是由,解得,且,,,解得.【题目点拨】本题主要考查了极坐标与参数方程和直角坐标的互化,同时也考查了直线参数的几何意义,属于中档题.19、(1).(2).【解题分析】试题分析:利用消去参数可得圆的直角坐标方程,再利用公式可把直角坐标方程化为极坐标方程.试题解析:(1)圆的直角坐标方程为.5分(2)把代入上述方程,得圆的极坐标方程为.10分考点:参数方程与普通方程的互化,普通方程与极坐标方程的互化.20、(1)或;(2)【解题分析】

(1)由方程有实数根则,可求出实数的取值范围.

(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【题目详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,则故.故为假命题且为真命题时,.【题目点拨】本题考查命题为真时求参数的范围和两个命题同时满足条件时,求参数的范围,属于基础题.21、(1);(2).【解题分析】

(1)ξ=2,则甲队有两人答对,一人答错,计算得到答案.(2)甲队和乙队得分之和为4,则甲可以得1,2,3分三种情况,计算其概率,再根据条件概率公式得到结果,【题目详解】(1)ξ=2,则甲队有两人答对,一人答错,故.(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分为η,则η~,,,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论