![广西部分重点中学2024届数学高二下期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/28/3A/wKhkGWW9L2aASYxgAAKcnp2jhbI599.jpg)
![广西部分重点中学2024届数学高二下期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/28/3A/wKhkGWW9L2aASYxgAAKcnp2jhbI5992.jpg)
![广西部分重点中学2024届数学高二下期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/28/3A/wKhkGWW9L2aASYxgAAKcnp2jhbI5993.jpg)
![广西部分重点中学2024届数学高二下期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/28/3A/wKhkGWW9L2aASYxgAAKcnp2jhbI5994.jpg)
![广西部分重点中学2024届数学高二下期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/28/3A/wKhkGWW9L2aASYxgAAKcnp2jhbI5995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西部分重点中学2024届数学高二下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的最大值为()A. B. C. D.2.已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则()A. B. C. D.3.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A. B. C. D.4.下列命题是真命题的是()A.,B.设是公比为的等比数列,则“”是“为递增数列”的既不充分也不必要条件C.“”是“”的充分不必要条件D.的充要条件是5.甲射击时命中目标的概率为,乙射击时命中目标的概率为,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A. B. C. D.6.甲、乙、丙、丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲、乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是()A.甲可以知道四人的成绩 B.丁可以知道自己的成绩C.甲、丙可以知道对方的成绩 D.乙、丁可以知道自己的成绩7.复数(为虚数单位)的共轭复数是()A. B. C. D.8.已知二项式的展开式的第二项的系数为,则()A. B. C.或 D.或9.设满足约束条件,若,且的最大值为,则()A. B. C. D.10.函数在点处的切线方程为()A. B. C. D.11.已知,,若包含于,则实数的取值范围是()A. B. C. D.12.下列命题中,正确的命题是()A.若,则B.若,则不成立C.,则或D.,则且二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,项的系数为______.(用数字作答)14.已知等差数列的前项和为,,,则数列的前项和为__________.15.由海军、空军、陆军各3名士兵组成一个有不同编号的的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法16.在的展开式中,的系数为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图(1).在中,,,,、分别是、上的点,且,将沿折起到的位置,使,如图(2).(1)求证:平面;(2)当点在何处时,三棱锥体积最大,并求出最大值;(3)当三棱锥体积最大时,求与平面所成角的大小.18.(12分)某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形,其外周长为毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设的长为毫米.(注:,其中为球半径,为圆柱底面积,为圆柱的高)(1)求容器中防蚊液的体积关于的函数关系式;(2)如何设计与的长度,使得最大?19.(12分)假定某射手射击一次命中目标的概率为.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:(1)X的概率分布;(2)数学期望E(X).20.(12分)今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科.已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人.按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.(I)根据所抽取的样本数据,填写答题卷中的列联表.并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量的分布列和数学期望.(的计算公式见下),临界值表:21.(12分)已知函数.(1)求的最小正周期;(2)求的最大值,并说明取最大值时对应的的值.22.(10分)已知函数,其中均为实数,为自然对数的底数.(I)求函数的极值;(II)设,若对任意的,恒成立,求实数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:直接利用柯西不等式求函数的最大值.详解:由柯西不等式得,所以(当且仅当即x=时取最大值)故答案为B.点睛:(1)本题主要考查柯西不等式求最值,意在考查学生对该知识的掌握水平和分析推理能力.(2)二元柯西不等式的代数形式:设均为实数,则,其中等号当且仅当时成立.2、D【解题分析】
分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.【题目详解】设为正方形的中心,为中点,过作的平行线,交于,过作垂直于,连接、、,则垂直于底面,垂直于,因此从而因为,所以即,选D.【题目点拨】线线角找平行,线面角找垂直,面面角找垂面.3、B【解题分析】
由古典概型及其概率计算公式得:有人表现突出,则县选取的人表现不突出的概率是,得解.【题目详解】由已知有分别从,两个县的15人中各选1人,已知有人表现突出,则共有种不同的选法,又已知有人表现突出,且县选取的人表现不突出,则共有种不同的选法,已知有人表现突出,则县选取的人表现不突出的概率是.故选:B.【题目点拨】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.4、B【解题分析】
取特殊值来判断A选项中命题的正误,取特殊数列来判断B选项中命题的正误,求出不等式,利用集合包含关系来判断C选项命题的正误,取特殊向量来说明D选项中命题的正误.【题目详解】对于A选项,当时,,所以,A选项中的命题错误;对于B选项,若,则等比数列的公比为,但数列是递减数列,若,等比数列是递增数列,公比为,所以,“”是“为递增数列”的既不充分也不必要条件,B选项中的命题正确;对于C选项,解不等式,得或,由于,所以,“”是“”的既不充分也不必要条件,C选项中的命题错误;对于D选项,当时,,但与不一定垂直,所以,D选项中的命题错误.故选B.5、D【解题分析】
记事件甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件的对立事件的概率,再利用对立事件的概率公式可得出事件的概率.【题目详解】记事件甲乙两人各自射击同一目标一次,该目标被击中,则事件甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得,,故选D.【题目点拨】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.6、B【解题分析】
根据题意可逐句进行分析,已知四人中有2位优秀,2位良好,而丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好,接下来,由上一步的结论,当甲知道乙的成绩后,就可以知道自己的成绩,同理,当丁知道丙的成绩后,就可以知道自己的成绩,从而选出答案.【题目详解】由丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好;当甲知道乙的成绩后,就可以知道自己的成绩,但是甲不知道丙和丁的成绩;当丁知道丙的成绩后,就可以知道自己的成绩,但是丁不知道甲和乙的成绩;综上,只有B选项符合.故选:B.【题目点拨】本题是一道逻辑推理题,此类题目的推理方法是综合法和分析法,逐条分析题目条件语句即可,属于中等题.7、B【解题分析】
根据复数除法运算,化简复数,再根据共轭复数概念得结果【题目详解】,故的共轭复数.故选B.【题目点拨】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.8、A【解题分析】分析:根据第二项系数,可求出;由定积分基本性质,求其原函数为,进而通过微积分基本定理求得定积分值。详解:展开式的第二项为所以系数,解得所以所以选A点睛:本题考查了二项式定理和微积分基本定理的综合应用,通过方程确定参数的取值,综合性强,属于中档题。9、B【解题分析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解代入目标函数得答案.详解:由约束条件作出可行域如图:化目标函数为,由图可知,当直线过B时,直线在y轴上的截距最小,即z最大,联立,解得,,解得.故选:B.点睛:线性规划中的参数问题及其求解思路(1)线性规划中的参数问题,就是已知目标函数的最值或其他限制条件,求约束条件或目标函数中所含参数的值或取值范围的问题.(2)求解策略:解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值.10、D【解题分析】分析:由题意,求得,得到,利用直线的点斜式方程,即可求解切线的方程;详解:由题意,函数,则,所以,即切线的斜率为,又,所以切线过点,所以切线的方程为,即,故选D.点睛:本题主要考查了利用导数的几何意义求解切线的方程问题,其中熟记导数的几何意义的应用是解答的关键,着重考查了推理与运算能力.11、B【解题分析】
解一元二次不等式求得集合,根据是的子集列不等式,由此求得的取值范围.【题目详解】由解得,所以,由于且包含于,所以,故的取值范围是.故选:B【题目点拨】本小题主要考查一元二次不等式的解法,考查根据包含关系求参数的取值范围,属于基础题.12、C【解题分析】
A.根据复数虚部相同,实部不同时,举例可判断结论是否正确;B.根据实数的共轭复数还是其本身判断是否成立;C.根据复数乘法的运算法则可知是否正确;D.考虑特殊情况:,由此判断是否正确.【题目详解】A.当时,,此时无法比较大小,故错误;B.当时,,所以,所以此时成立,故错误;C.根据复数乘法的运算法则可知:或,故正确;D.当时,,此时且,故错误.故选:C.【题目点拨】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.二、填空题:本题共4小题,每小题5分,共20分。13、-30【解题分析】
由题意利用幂的意义,组合数公式,求得项的系数.【题目详解】,表示个因式的积,要得到含项,需个因式选,个因式选,其余的个因式选即可.展开式中,项的系数为.故答案为:-30【题目点拨】本题考查了二项式定理、组合数公式,需熟记公式,属于基础题.14、【解题分析】
由,列出关于首项为,公差为的方程组,解方程求得,可得,利用等比数列的求和公式可得结果.【题目详解】设等差数列的首项为,公差为,则解得,所以,所以,所以是以2为首项,16为公比的等比数列,所以数列的前项和为,故答案为.【题目点拨】本题主要考查等差数列的通项公式以及等比数列的求和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.15、2592【解题分析】
假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,有12种填入方法,再每个a,b,c填入3名士兵均有种,根据分步计数原理可得.【题目详解】解:假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,则有种,每个a,b,c填入3名士兵均有种,故共有,故答案为:2592【题目点拨】本题考查了分步计数原理,考查了转化能力,属于难题.16、【解题分析】
由题意,二项式展开式的通项为,令,即可求解.【题目详解】由题意,二项式的展开式的通项为,令,即,可得,即展开式中的系数为40.【题目点拨】本题主要考查了二项式展开式中项的系数问题,其中解答中熟记二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)点位于中点时,三棱锥体积最大,最大值为(3)【解题分析】
(1)根据线面垂直的判定定理证明;(2)将三棱锥的体积表示成某个变量的函数,再求其最大值;(3)先找出线面角的平面角,再解三角形求角.【题目详解】(1)证明:∵,,∴,因此,所以,又∵,∴平面;(2)解:设,则,由(1),又因为,,∴平面;所以,因此当,即点位于中点时,三棱锥体积最大,最大值为;(3)解:如图,联结,由于,且,∴,即,因此即为与平面所成角,∵,∴,所以,即与平面所成角的大小为.【题目点拨】本题考查线面垂直的证明和体积的最值以及求线面角,属于中档题.18、(1),(2)当为毫米,为毫米时,防蚊液的体积有最大值.【解题分析】
(1)由矩形其外周长为毫米,设的长为毫米,可得AB的长度,再根据圆柱和球的体积公式即可求得防蚊液的体积关于的函数关系式;(2)对(1)求得的函数关系式求导得,据此讨论函数单调性,根据函数单调性即可确定防毒液体积最大值.【题目详解】解:(1)由得,由得,所以防蚊液体积,(2)求导得,令得;令得,所以在上单调增,在上单调减,所以当时,有最大值,此时,,答:当为毫米,为毫米时,防蚊液的体积有最大值.【题目点拨】本题是考查关于函数及其导数的一道应用题,难度不大.19、(1)分布列见解析;(2)期望为.【解题分析】分析:(1)先写出X的所有可能取值,再求出每一个值对应的概率,再写出X的分布列.(2)直接利用数学期望的公式求E(X).详解:(1)耗用子弹数X的所有可能取值为1,2,3,1.当X=1时,表示射击一次,命中目标,则P(X=1)=;当X=2时,表示射击两次,第一次未中,第二次射中目标,则P(X=2)=(1-)×=;当X=3时,表示射击三次,第一次、第二次均未击中,第三次击中,则P(X=3)=(1-)×(1-)×=;当X=1时,表示射击四次,前三次均未击中,第四次击中或四次均未击中,则P(X=1)=(1-)×(1-)×(1-)×+(1-)×(1-)×(1-)×(1-)=.所以X的分布列为X1231P(2)由题得E(X)=1×+2×+3×+1×=.点睛:(1)本题主要考查随机变量的分布列和数学期望,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)本题的关键是计算概率,本题主要涉及独立事件的概率,一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.20、(I)没有90%的把握认为选择物理还是历史与性别有关;(II)见解析【解题分析】
(I)由条件知,按分层抽样法抽取的36个样本数据中有个男生,16个女生,根据题意列出列联表,求得的值,即可得到结论.(II)由(I)知在样本里选历史的有9人.其中男生3人,女生6人,求得可能的取值有,进而求得相应的概率,列出随机变量的分布列,利用公式求解期望.【题目详解】(I)由条件知,按分层抽样法抽取的36个样本数据中有个男生,16个女生,结合题目数据可得列联表:男生女生合计选物理17320选历史10616合计279得而,所以没有90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学七年级下册第41课时《用加减法解二元一次方程组(三)》听评课记录
- 湘教版数学八年级上册2.5《第6课时 全等三角形的性质和判定的应用》听评课记录1
- 听评课记录英语九年级
- 人教版(广西版)九年级数学上册听评课记录21.2 解一元二次方程
- 生态自然保护游合同
- 狂犬疫苗打完免责协议书(2篇)
- 苏科版数学八年级下册《10.2 分式的基本性质》听评课记录
- 部编版道德与法治七年级上册第三单元第七课《亲情之爱第三框让家更美好》听课评课记录
- 【2022年新课标】部编版七年级上册道德与法治第三单元师长情谊6-7课共5课时听课评课记录
- 五年级数学上册苏教版《认识平方千米》听评课记录
- 项目工程质量管理体系
- 员工积分考核管理办法
- 四川省成都市温江区2023-2024学年四年级下学期期末语文试卷
- 北京能源集团有限责任公司招聘笔试题库2024
- 消防改造期间消防应急预案
- 2024中国妇科临床实践指南-卵巢癌
- 2024-2030年中国靶机行业市场发展趋势与前景展望战略分析报告
- 2024过敏性休克抢救指南(2024)课件干货分享
- 09BD13建筑物防雷装置
- 医疗行业提高医院服务质量的改进方案三篇
- 预应力空心方桩打桩工程监理实施细则
评论
0/150
提交评论