2024届浙江省温州市实验中学数学九上期末预测试题含解析_第1页
2024届浙江省温州市实验中学数学九上期末预测试题含解析_第2页
2024届浙江省温州市实验中学数学九上期末预测试题含解析_第3页
2024届浙江省温州市实验中学数学九上期末预测试题含解析_第4页
2024届浙江省温州市实验中学数学九上期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省温州市实验中学数学九上期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,抛物线和直线,当时,的取值范围是()A. B.或 C.或 D.2.若点,,在双曲线上,则,,的大小关系是()A. B. C. D.3.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④4.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°5.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.246.下列图形的主视图与左视图不相同的是()A. B. C. D.7.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+28.下列事件中,是随机事件的是()A.任意一个五边形的外角和等于540°B.通常情况下,将油滴入水中,油会浮在水面上C.随意翻一本120页的书,翻到的页码是150D.经过有交通信号灯的路口,遇到绿灯9.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm10.如下图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.11.如图,是的直径,,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:①;②;③点是的中点.其中正确的是()A.①② B.①③ C.②③ D.①②③12.下列四种图案中,不是中心对称图形的为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.14.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.15.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是________.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.17.二次函数y=3x2+3的最小值是__________.18.在中,,,则______.三、解答题(共78分)19.(8分)如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.20.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;(3)求当线段AM最短时的长度21.(8分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.22.(10分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23.(10分)如图,在平面直角坐标系xOy中,二次函数的图象与轴,轴的交点分别为和.(1)求此二次函数的表达式;(2)结合函数图象,直接写出当时,的取值范围.24.(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式≥k2x+b的解.25.(12分)解不等式组,并把解集在数轴上表示出来:26.如图,在平面直角坐标系中,抛物线的顶点坐标为,与轴交于点,与轴交于点,.(1)求二次函数的表达式;(2)过点作平行于轴,交抛物线于点,点为抛物线上的一点(点在上方),作平行于轴交于点,当点在何位置时,四边形的面积最大?并求出最大面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的的取值范围即可.【详解】解:联立,解得,,两函数图象交点坐标为,,由图可知,时的取值范围是或.故选:B.【点睛】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.2、C【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可.【详解】解:∵若点,,在双曲线上,∴∴故选:C.【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题.3、C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.4、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.5、C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A(-1,6),点B(-3,2),应用待定系数法求得直线AB的解析式为y=2x+8,直线AB与x轴的交点C(-4,0),所以OC=4,点A到x轴的距离为6,所以△AOC的面积为=1.故选C.考点:待定系数法求一次函数解析式;坐标与图形.6、D【解析】确定各个选项的主视图和左视图,即可解决问题.【详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【点睛】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.7、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8、D【分析】根据随机事件的定义,逐一判断选项,即可得到答案.【详解】∵任意一个五边形的外角和等于540°,是必然事件,∴A不符合题意,∵通常情况下,将油滴入水中,油会浮在水面上,是必然事件,∴B不符合题意,∵随意翻一本120页的书,翻到的页码是150,是不等能事件,∴C不符合题意,∵经过有交通信号灯的路口,遇到绿灯,是随机事件,∴D符合题意,故选D.【点睛】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键.9、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.10、B【解析】根据中心对称图形的定义以及轴对称图形的定义进行判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,根据定义得出图形形状是解决问题的关键.11、A【分析】根据“同弧所对圆周角相等”以及“等角的余角相等”即可解决问题①,运用相似三角形的判定定理证明△EBC∽△BDC即可得到②,运用反证法来判定③即可.【详解】证明:①∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确;③∵∠ADB=90°,∴∠BDF=90°,∵DE为直径,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.故选:A.【点睛】本题考查了圆周角的性质,余角的性质,相似三角形的判定与性质,平行线的判定等知识,知识涉及比较多,但不难,熟练掌握基础的定理性质是解题的关键.12、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;

B、是中心对称图形,故本选项不符合题意;

C、是中心对称图形,故本选项符合题意;

D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.二、填空题(每题4分,共24分)13、2.5【分析】连接AC,根据∠ABC=90°可知AC是⊙O的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC的长,进而得出结论.【详解】解:如图,连接AC,∵∠ABC=90°,

∴AC是⊙O的直径,

∴∠D=90°,

∵AD=4,CD=3,

∴AC=5,∴⊙O的半径=2.5,故答案为:2.5.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.14、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.15、y=(x+4)2-2【解析】∵y=x2向左平移4个单位后,再向下平移2个单位.∴y=.故此时抛物线的解析式是y=.故答案为y=(x+4)2-2.点睛:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.17、1.【分析】根据二次函数的性质求出函数的最小值即可.【详解】解:∵y=1x2+1=1(x+0)2+1,

∴顶点坐标为(0,1).

∴该函数的最小值是1.故答案为:1.【点睛】本题考查了二次函数的性质,二次函数的最值,正确的理解题意是解题的关键.18、【分析】根据题意画出图形,进而得出cosB=求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,

则cosB==.

故答案为:.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题(共78分)19、(1);(2)①,②t的值为或,③当t=2时,四边形ACQP的面积有最小值,最小值是.【分析】(1)求出对称轴,再求出y=与抛物线的两个交点坐标,将其代入抛物线的顶点式即可;(2)①先求出A、B、C的坐标,写出OB、OC的长度,再求出BC的长度,由运动速度即可求出t的取值范围;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,分别证△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如图,过点Q作QH⊥x轴于点H,证△BHQ∽△BOC,求出HQ的长,由公式S四边形ACQP=S△ABC-S△BPQ可求出含t的四边形ACQP的面积,通过二次函数的图象及性质可写出结论.【详解】解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2,将点(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴抛物线的解析式为(2)①在中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,当∠BPQ=90°时,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;当∠PQB=90°时,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴,即,∴t=,综上所述,t的值为或;③如右图,过点Q作QH⊥x轴于点H,则∠BHQ=∠BOC=90°,∴HQ∥OC,∴△BHQ∽△BOC,∴,即,∴HQ=,∴S四边形ACQP=S△ABC﹣S△BPQ=×6×3﹣(4﹣t)×t=(t﹣2)2+,∵>0,∴当t=2时,四边形ACQP的面积有最小值,最小值是.【点睛】本题考查了待定系数法求解析式,相似三角形的判定及性质,二次函数的图象及性质等,熟练掌握并灵活运用是解题的关键.20、(1)证明见解析;(2)BE=1或;(3).【解析】试题分析:(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=-(x-3)2+,利用二次函数的性质,继而求得线段AM的最小值.试题解析:(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴∴CE=∴BE=6-∴BE=1或(3)解:设BE=x,又∵△ABE∽△ECM,∴即:∴CM=∴AM=-5-CM=∴当x=3时,AM最短为.考点:相似形综合题.21、(1)见详解;(2)四边形ADCF是矩形;证明见详解.【分析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【详解】(1)证明:∵E是AD的中点,

∴AE=DE.

∵AF∥BC,

∴∠FAE=∠BDE,∠AFE=∠DBE.

在△AFE和△DBE中,∴△AFE≌△DBE(AAS).

∴AF=BD.

∵AF=DC,

∴BD=DC.

即:D是BC的中点.

(2)解:四边形ADCF是矩形;

证明:∵AF=DC,AF∥DC,

∴四边形ADCF是平行四边形.

∵AB=AC,BD=DC,

∴AD⊥BC即∠ADC=90°.

∴平行四边形ADCF是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.22、(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为1元【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得,解得:,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+1.∵﹣10<0,∴p=﹣10(x﹣45)2+1是开口向下的抛物线,∴当x=45时,p有最大值,最大值为1元,即销售单价为45元时,每天可获得最大利润,最大利润为1元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.23、(1);(2)或.【分析】(1)把已知的两点代入解析式即可求出二次函数的解析式;(2)由抛物线的对称性与图形即可得出时的取值范围.【详解】解:(1)∵抛物线与轴、轴的交点分别为和,∴.解得:.∴抛物线的表达式为:.(2)二次函数图像如下,由图像可知,当时,的取值范围是或.【点睛】此题主要考察二次函数的应用.24、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.【解析】(1)由点A的坐标利用反比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论