2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题含解析_第1页
2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题含解析_第2页
2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题含解析_第3页
2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题含解析_第4页
2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省绍兴市皋埠镇中学九年级数学第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内 B.在⊙O上C.在⊙O外 D.与⊙O的位置关系无法确定2.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.243.3的倒数是()A. B. C. D.4.已知二次函数的图象与x轴只有一个交点,则这个交点的坐标为()A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)5.如图,下列条件中,能判定的是()A. B. C. D.6.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为()A. B. C. D.7.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.8.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.9.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.10.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形11.如图所示的几何体,它的俯视图是()A. B.C. D.12.定义新运算:,例如:,,则y=2⊕x(x≠0)的图象是()A. B. C. D.二、填空题(每题4分,共24分)13.一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.14.一辆汽车在行驶过程中,路程(千米)与时间(小时)之间的函数关系如图所示.当时,关于的函数解析式为,那么当时,关于的函数解析式为________.15.二次函数y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,则关于x的一元二次方程﹣x2+bx+c=0的根为_____.16.在平面直角坐标系中,若点与点关于原点对称,则__________.17.如图,在中,,,,是上一点,,过点的直线将分成两部分,使其所分成的三角形与相似,若直线与另一边的交点为点,则__________.18.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.三、解答题(共78分)19.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.20.(8分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.21.(8分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.(1)求的长;(2)若,求.22.(10分)解方程:x2﹣4x﹣21=1.23.(10分)在平面直角坐标系中,已知抛物线的表达式为:y=﹣x2+bx+c.(1)根据表达式补全表格:抛物线顶点坐标与x轴交点坐标与y轴交点坐标(1,0)(0,-3)(2)在如图的坐标系中画出抛物线,并根据图象直接写出当y随x增大而减小时,自变量x的取值范围.24.(10分)如图①,抛物线与轴交于,两点(点位于点的左侧),与轴交于点.已知的面积是.(1)求的值;(2)在内是否存在一点,使得点到点、点和点的距离相等,若存在,请求出点的坐标;若不存在,请说明理由;(3)如图②,是抛物线上一点,为射线上一点,且、两点均在第三象限内,、是位于直线同侧的不同两点,若点到轴的距离为,的面积为,且,求点的坐标.25.(12分)二次函数y=x2﹣2x﹣3图象与x轴交于A、B两点,点A在点B左侧,求AB的长.26.如图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,,求的直径;(2)若,求的度数.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据点与圆的位置关系判断即可.【详解】∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.【点睛】此题考查的是点与圆的位置关系,掌握点与圆的位置关系的判断方法是解决此题的关键.2、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3、C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.4、C【分析】根据△=b2-4ac=0时,抛物线与x轴有一个交点列出方程,解方程求出k,再根据二次函数的图象和性质解答.【详解】∵二次函数的图象与x轴只有一个交点,∴,,解得:,∴二次函数,当时,,故选C.【点睛】本题考查的是抛物线与x轴的交点,掌握当△=b2-4ac=0时,抛物线与x轴有一个交点是解题的关键.5、D【分析】根据相似三角形的各个判定定理逐一分析即可.【详解】解:∵∠A=∠A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但∠A不是两组对应边的夹角,不能判定,故C选项不符合题意;若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意.故选D.【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键.6、A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.7、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.8、B【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.9、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.10、C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.11、D【分析】根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.【详解】从几何体上面看,有三列,第一列2个,第二列1个位于第2层,第三列1个位于第2层.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12、D【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【详解】解:由新定义得:,根据反比例函数的图像可知,图像为D.故选D.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用新定义写出正确的函数解析式,再根据函数的解析式确定答案,本题列出来的是反比例函数,所以掌握反比例函数的图像是关键.二、填空题(每题4分,共24分)13、150【分析】根据弧长公式计算.【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【点睛】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.14、【分析】将x=1代入得出此时y的值,然后设当1≤x≤2时,y关于x的函数解析式为y=kx+b,再利用待定系数法求一次函数解析式即可.【详解】解:∵当时0≤x≤1,y关于x的函数解析式为y=1x,

∴当x=1时,y=1.

又∵当x=2时,y=11,

设当1<x≤2时,y关于x的函数解析式为y=kx+b,将(1,1),(2,11)分别代入解析式得,,解得,所以,当时,y关于x的函数解析式为y=100x-2.故答案为:y=100x-2.【点睛】本题考查了一次函数的应用,主要利用了一次函数图象上点的坐标特征,待定系数法求一次函数解析式,比较简单.15、x1=1,x2=﹣1.【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与x轴的另一个交点,从而可以得到一元二次方程-x2+bx+c=0的解,本题得以解决.【详解】由图象可得,抛物线y=﹣x2+bx+c与x轴的一个交点为(﹣1,0),对称轴是直线x=﹣1,则抛物线与x轴的另一个交点为(1,0),即当y=0时,0=﹣x2+bx+c,此时方程的解是x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.16、1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,

∴a=-4,b=-3,

则ab=1.

故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.17、1,,【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DCP∽△BCA∴即,解得DP=如图,当∠CPD=∠B,且∠C=∠C时,∴△DCP∽△ACB∴即,解得DP=故答案为1,,.【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.18、3或1【解析】分圆运动到第一次与AB相切,继续运算到第二次与AB相切两种情况,画出图形进行求解即可得.【详解】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为3或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.三、解答题(共78分)19、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.20、两次摸到的球都是红球的概率为.【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解.21、(1)6;(2)4【分析】(1)连接EF,证明△EFG∽△DCG.推出,求出DE即可解决问题.(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,,即可求出答案.【详解】解:(1)连接.∵是平行四边形,∴点为的中点.∵为的中点,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、x1=7,x2=﹣2.【分析】本题考查了一元二次方程的解法,由于-21=-7×2,且-7+2=-4,所以本题可用十字相乘法分解因式求解.【详解】解:x2﹣4x﹣21=1,(x﹣7)(x+2)=1,x﹣7=1,x+2=1,x1=7,x2=﹣2.23、(1)补全表格见解析;(1)图象见解析;当y随x增大而减小时,x的取值范围是x>1.【分析】(1)根据待定系数法,把点(1,0),(0,-3)坐标代入得,则可确定抛物线解析式为,然后把它配成顶点式得到顶点的坐标;再根据对称性求出另一个交点坐标;(1)根据函数解析式和(1)表、描点联线画出函数图像,再根据图象性质即可得出结论;【详解】解:(1)把点(1,0),(0,-3)坐标代入得:,解得:,抛物线解析式为,化为顶点式为:,故顶点坐标为(1,1),对称轴为x=1,又∵点(1,0)是交点,故另一个交点为(3,0)补全表格如下:抛物线顶点坐标与x轴交点坐标与y轴交点坐标y=﹣x1+4x-3(1,1)(1,0)(3,0)(0,-3)(1)抛物线如图所示:当y随x增大而减小时,x的取值范围是x>1.【点睛】此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.24、(1)-3;(2)存在点,使得点到点、点和点的距离相等;(3)坐标为【分析】(1)令,求出x的值即可求出A、B的坐标,令x=0,求出y的值即可求出点C的坐标,从而求出AB和OC,然后根据三角形的面积公式列出方程即可求出的值;(2)由题意,点即为外接圆圆心,即点为三边中垂线的交点,利用A、C两点的坐标即可求出、的中点坐标,然后根据等腰三角形的性质即可得出线段的垂直平分线过原点,从而求出线段的垂直平分线解析式,然后求出AB中垂线的解析式,即可求出点的坐标;(3)作轴交轴于,易证,从而求出,利用待定系数法和一次函数的性质分别求出直线AC、BP的解析式,和二次函数的解析式联立,即可求出点P的坐标,然后利用SAS证出,从而得出,设,利用平面直角坐标系中任意两点之间的距离公式即可求出m,从而求出点Q的坐标.【详解】解:(1)令,即解得,由图象知:,∴AB=1令x=0,解得y=∴点C的坐标为∴OC=解得:,(舍去)(2)存在,由题意,点即为外接圆圆心,即点为三边中垂线的交点,,,、的中点坐标为线段的垂直平分线过原点,设线段的垂直平分线解析式为:,将点的坐标代入,得解得:∴线段的垂直平分线解析式为:由,,线段的垂直平分线为将代入,解得:存在点,使得点到点、点和点的距离相等(3)作轴交轴于,则∴、到的距离相等,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论