广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题含解析_第1页
广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题含解析_第2页
广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题含解析_第3页
广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题含解析_第4页
广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西贺州市平桂区高级中学2024届高二数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个袋中装有大小相同的个白球和个红球,现在不放回的取次球,每次取出一个球,记“第次拿出的是白球”为事件,“第次拿出的是白球”为事件,则事件与同时发生的概率是()A. B. C. D.2.已知,若的展开式中各项系数之和为,则展开式中常数项为()A. B. C. D.3.“”是“函数在内存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.与终边相同的角可以表示为A. B.C. D.5.下面命题正确的有()①a,b是两个相等的实数,则是纯虚数;②任何两个复数不能比较大小;③若,且,则.A.0个 B.1个 C.2个 D.3个6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420 B.210 C.70 D.357.已知函数的定义域为,且满足(是的导函数),则不等式的解集为()A. B. C. D.8.若在曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”.下列方程:①②;③④对应的曲线中存在的“自公切线”的是()A.①③ B.②③ C.②③④ D.①②④9.一台机器在一天内发生故障的概率为,若这台机器一周个工作日不发生故障,可获利万元;发生次故障获利为万元;发生次或次以上故障要亏损万元,这台机器一周个工作日内可能获利的数学期望是()万元.(已知,)A. B. C. D.10.已知(为虚数单位),则A. B. C. D.11.将曲线按变换后的曲线的参数方程为()A. B. C. D.12.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,2sin2α=cos2α+1,则cosα=__________14.f(x)=2sinωx(0<ω<1),在区间上的最大值是,则ω=________.15.已知命题,命题.若命题是的必要不充分条件,则的取值范围是____;16.命题,命题,则“或”是__________命题.(填“真”、“假”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若二面角的平面角是直角,我们称平面垂直于平面,记作.(1)如图,已知,,,且,求证:;(2)如图,在长方形中,,,将长方形沿对角线翻折,使平面平面,求此时直线与平面所成角的大小.18.(12分)在10件产品中,有3件一等品,7件二等品,.从这10件产品中任取3件,求:取出的3件产品中一等品件数X的分布列和数学期望.19.(12分)某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据2456843678(1)试求回归直线方程;(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)(参考数据与公式:,,)20.(12分)的展开式中,奇数项的二项式系数之和为128,且前三项系数成等差数列.(1)求的值;(2)若,展开式有多少有理项?写出所有有理项.21.(12分)某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:分组[160,166)[166,172)[172,178)[178,184)[184,190]人数31024103这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):(1)求,;(2)给出正态分布的数据:,.(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.22.(10分)已知函数,.(1)若,求函数的图像在点处的切线方程;(2)讨论的单调性.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

将事件表示出来,再利用排列组合思想与古典概型的概率公式可计算出事件的概率.【题目详解】事件:两次拿出的都是白球,则,故选D.【题目点拨】本题考查古典概型的概率计算,解题时先弄清楚各事件的基本关系,然后利用相关公式计算所求事件的概率,考查计算能力,属于中等题.2、B【解题分析】

通过各项系数和为1,令可求出a值,于是可得答案.【题目详解】根据题意,在中,令,则,而,故,所以展开式中常数项为,故答案为B.【题目点拨】本题主要考查二项式定理,注意各项系数之和和二项式系数和之间的区别,意在考查学生的计算能力,难度不大.3、A【解题分析】分析:先求函数在内存在零点的解集,,再用集合的关系判断充分条件、还是必要条件。详解:函数在内存在零点,则,所以的解集那么是的子集,故充分非必要条件,选A点睛:在判断命题的关系中,转化为判断集合的关系是容易理解的一种方法。4、C【解题分析】

将变形为的形式即可选出答案.【题目详解】因为,所以与终边相同的角可以表示为,故选C.【题目点拨】本题考查了与一个角终边相同的角的表示方法,属于基础题.5、A【解题分析】

对于找出反例即可判断,根据复数的性质可判断.【题目详解】若,则是0,为实数,即错误;

复数分为实数和虚数,而任意实数都可以比较大小,虚数是不可以比较大小的,即错误;

若,,则,但,即错误;故选:A【题目点拨】本题主要考查了复数的概念与性质,属于基础题.6、A【解题分析】

将不同的染色方案分为:相同和不同两种情况,相加得到答案.【题目详解】按照的顺序:当相同时:染色方案为当不同时:染色方案为不同的染色方案为:种故答案为A【题目点拨】本题考查了加法原理和乘法原理,把染色方案分为相同和不同两种情况是解题的关键.7、D【解题分析】

构造函数,利用导数分析函数在上的单调性,在不等式两边同时乘以化为,即,然后利用函数在上的单调性进行求解即可.【题目详解】构造函数,其中,则,所以,函数在定义域上为增函数,在不等式两边同时乘以得,即,所以,解得,因此,不等式的解集为,故选:D.【题目点拨】本题考查利用构造新函数求解函数不等式问题,其解法步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数分析函数的单调性,必要时分析该函数的奇偶性;(3)将不等式变形为,利用函数的单调性与奇偶性求解.8、B【解题分析】

化简函数的解析式,结合函数的图象的特征,判断此函数是否有自公切线.【题目详解】①是一个等轴双曲线,没有自公切线;②,在和处的切线都是,故②有自公切线;③此函数是周期函数,过图象的最高点的切线都重合,故此函数有自公切线;④即结合图象可得,此曲线没有自公切线.故选:.【题目点拨】本题考查命题的真假判断与应用,考查学生的数形结合的能力,难度一般.9、C【解题分析】

设获利为随机变量,可得出的可能取值有、、,列出随机变量的分布列,利用数学期望公式计算出随机变量的数学期望.【题目详解】设获利为随机变量,则随机变量的可能取值有、、,由题意可得,,则.所以,随机变量的分布列如下表所示:因此,随机变量的数学期望为,故选C.【题目点拨】本题考查随机变量数学期望的计算,解题的关键就是根据已知条件列出随机变量的分布列,考查运算求解能力,属于中等题.10、B【解题分析】

由题得,再利用复数的除法计算得解.【题目详解】由题得,故答案为:B【题目点拨】本题主要考查复数的运算,意在考查学生对该知识的掌握水平和分析推理计算能力.11、D【解题分析】由变换:可得:,代入曲线可得:,即为:令(θ为参数)即可得出参数方程.故选D.12、C【解题分析】

先将队得分高于队得分的情况列举出来,然后进行概率计算.【题目详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【题目点拨】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

化简2sin2α=cos2α+1即可得出sinα与cosα之间的关系式,再计算即可【题目详解】因为,2sin2α=cos2α+1所以,化简得解得【题目点拨】本题考查倍角的相关计算,属于基础题.14、【解题分析】

函数f(x)的周期T=,因此f(x)=2sinωx在上是增函数,∵0<ω<1,∴是的子集,∴f(x)在上是增函数,∴=,即2sin=,∴ω=,∴ω=,故答案为.15、【解题分析】

求得命题,又由命题是的必要不充分条件,所以是的真子集,得出不等式组,即可求解,得到答案.【题目详解】由题意,命题,命题.又由命题是的必要不充分条件,所以是的真子集,设,则满足,解得,经验证当适合题意,所以的取值范围是.【题目点拨】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、真【解题分析】分析:先判断p,q真假,再判断“或”真假.详解:因为,所以p为假命题,因为,所以q为真命题,因此“或”是真命题,点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)在内过点作,根据题意得到,进而可得出结论;(2)过点作于点,连接,得到即是直线与平面所成角,根据题中条件,求出,,由余弦定理得到,进而可求出结果.【题目详解】(1)在内过点作,因为,,且,所以,因为,所以;(2)过点作于点,连接,因为平面平面,所以平面,所以即是直线与平面所成角;又在长方形中,,,所以,;因此,所以,又,由余弦定理可得:,所以,所以,因此直线与平面所成角的大小为.【题目点拨】本题主要考查线面垂直的证明,以及求直线与平面所成的角,熟记线面垂直的判定定理,以及几何法求线面角即可,属于常考题型.18、见解析【解题分析】

由题意可知,可能取值为0,1,2,3,且服从超几何分布,由此能求出的分布列和数学期望.【题目详解】解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)=,k=0,1,2,3.所以随机变量X的分布列是X0123PX的数学期望EX=【题目点拨】本题考查离散型随机变量的分布列和数学期望,解题时要认真审题,注意排列组合知识的合理运用,是近几年高考题中经常出现的题型.19、(1)(2)估计宣传费用为万元时,销售该产品的利润最大【解题分析】【试题分析】(1)先求出,再设回归直线方程为:,算出,代入回归方程求出,进而求出回归直线方程为;(2)先建立利润函数(万元),即,再求导可得,由,且时,,时,,即当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。解:(1),设回归直线方程为:,,,所以回归直线方程为;(2)销售利润(万元),,,由,且时,,时,,所以当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。点睛:解答本题的第一问时,先求出,再设回归直线方程为:,算出,然后将其代入回归方程求出,从而求出回归直线方程为;解答本题的第二问时,先建立利润函数(万元),即,再求导可得,由,且时,,时,,最后确定当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。20、(1)2或14;(2),,.【解题分析】

先由二项式系数的性质求,再根据二项式展开式的通项公式和等差中项公式求;(2)根据二项式展开式的通项公式,令的指数为整数次求解.【题目详解】因为奇数项的二项式系数之和为128,所以,解得,所以二项式为第一项:,系数为1,第二项:,系数为,第三项:,系数为,由前三项系数成等差数列得:,解得或.(2)若,由(1)得二项式为,通项为:,其中所以,令即,此时;令即,不符题意;令即,不符题意;令即,此时;令即,不符题意;令即,不符题意;令即,此时综上,有3项有理项,分别是:,,.【题目点拨】本题考查二项式定理的系数性质和展开式的通项公式,等差中项公式.注意是第项.21、(1)=174;;(2)(i)0.6826;(ii)8185【解题分析】

(1)由每组的中间值乘以该组的人数,再求和,最后除以总人数,即可求出平均值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论