2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题含解析_第1页
2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题含解析_第2页
2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题含解析_第3页
2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题含解析_第4页
2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市湘一芙蓉中学高二数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数满足为自然对数的底数),其中为的导函数,若,则的解集为()A. B. C. D.2.已知函数,关于的不等式只有两个整数解,则实数的取值范围是()A. B. C. D.3.二项式的展开式中只有第项的二项式系数最大,且展开式中的第项的系数是第项的系数的倍,则的值为()A. B. C. D.4.已知复数满足:,且的实部为2,则A.3 B. C. D.5.在二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;在三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=4A.4πr4 B.3πr46.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}7.已知函数的导函数为,且满足,则()A. B. C.2 D.-28.若α是第一象限角,则sinα+cosα的值与1的大小关系是()A.sinα+cosα>1 B.sinα+cosα=1 C.sinα+cosα<1 D.不能确定9.下列关于积分的结论中不正确的是()A. B.C.若在区间上恒正,则 D.若,则在区间上恒正10.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.411.已知,是的导数,若的展开式中的系数小于的展开式中的系数,则的取值范围是()A. B.C. D.12.甲、乙等五个人排成一排,要求甲和乙不能相邻,则不同的排法种数为()A.48 B.60 C.72 D.120二、填空题:本题共4小题,每小题5分,共20分。13.定积分的值为_____.14.已知双曲线上的动点到点和的距离分别为和,,且,则双曲线的方程为_______.15.已知关于的不等式的解集为,则实数的取值范围.16.已知向量,若则实数的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线(t为参数),曲线.(设直角坐标系x正半轴与极坐系极轴重合).(1)求曲线与直线的普通方程;(2)若点P在曲线上,Q在直线上,求的最小值.18.(12分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程;(2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.19.(12分)在平面直角坐标系xOy中,圆C的参数方程为(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ-)=.若直线l与圆C有两个公共点,求实数m的取值范围.20.(12分)已知函数.若是的极值点.(1)求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的函数,求的最大值.21.(12分)在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.22.(10分)已知等比数列的各项均为正数,且,,数列的前项和为.(Ⅰ)求;(Ⅱ)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由,以及,联想到构造函数,所以等价为,通过导数求的单调性,由单调性定义即可得出结果。【题目详解】设,等价为,,故在上单调递减,所以,解得,故选C。【题目点拨】本题主要考查利用导数研究函数的单调性的问题,利用单调性定义解不等式,如何构造函数是解题关键,意在考查学生数学建模能力。2、C【解题分析】试题分析:,∴在上单调递增,上单调递减,∴,又∵,,不等式只有两个整数解,∴,即实数的取值范围是故选C.【考点】本题主要考查导数的运用.3、B【解题分析】二项式的展开式中只有第6项的二项式系数最大,则,二项式展开式的通项公式为:,由题意有:,整理可得:.本题选择D选项.点睛:二项式系数与展开式项的系数的异同一是在Tr+1=an-rbr中,是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指,而后者是字母外的部分,前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.4、B【解题分析】分析:根据题意设根据题意得到,从而根据复数的模的概念得到结果.详解:设根据题意得到则=.故答案为B.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.5、B【解题分析】

根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到W'【题目详解】由题知,S'=l,V'=S所以W=3πr4,故选【题目点拨】本题主要考查学生的归纳和类比推理能力。6、B【解题分析】

依题意,由于,所以.当时,,当时,,故的值域为.故选B.【题目点拨】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.7、D【解题分析】试题分析:题中的条件乍一看不知如何下手,但只要明确了是一个常数,问题就很容易解决了.对进行求导:=,所以,-1.考点:本题考查导数的基本概念及求导公式.点评:在做本题时,遇到的主要问题是①想不到对函数进行求导;②的导数不知道是什么.实际上是一个常数,常数的导数是0.8、A【解题分析】试题分析:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|,再由三角形任意两边之和大于第三边,得出结论.解:如图所示:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|.△OPM中,∵|MP|+|OM|>|OP|=1,∴sinα+cosα>1,故选A.考点:三角函数线.9、D【解题分析】

结合定积分知识,对选项逐个分析可选出答案.【题目详解】对于选项A,因为函数是R上的奇函数,所以正确;对于选项B,因为函数是R上的偶函数,所以正确;对于选项C,因为在区间上恒正,所以图象都在轴上方,故正确;对于选项D,若,可知的图象在区间上,在轴上方的面积大于下方的面积,故选项D不正确.故选D.【题目点拨】本题考查了定积分,考查了函数的性质,属于基础题.10、B【解题分析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.11、B【解题分析】

由展开式中的系数是,又,所以的展开式中的系数是,得到,继而解得结果.【题目详解】由题意,函数展开式中的系数是,又,所以的展开式中x的系数是,依题意得,解得.故选:B.【题目点拨】本题主要考查了二项式定理的应用,以及导数的计算,其中解答熟记导数的运算公式和二项展开式的通项是解答的关键,着重考查了推理与运算能力,属于中档试题.12、C【解题分析】

因为甲和乙不能相邻,利用插空法列出不同的排法的算式,得到答案.【题目详解】甲、乙等五个人排成一排,要求甲和乙不能相邻,故先安排除甲、乙外的3人,然后安排甲、乙在这3人之间的4个空里,所以不同的排法种数为,故选C项.【题目点拨】本题考查排列问题,利用插空法解决不相邻问题,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】14、【解题分析】

在△中,利用余弦定理和双曲线的定义得到,从而求得,,最后求出双曲线的方程即可.【题目详解】在△中,由余弦定理得:,,,则双曲线方程为.故答案为:.【题目点拨】本小题考查双曲线的定义、余弦定理、三角恒等变换等知识的交会,考查函数与方程思想,考查运算求解能力,属于中档题.15、【解题分析】试题分析:时,不等式为,恒成立,当时,有解得,综上有.考点:不等式恒成立问题,二次不等式的解集.16、【解题分析】

由两向量垂直得数量积为0,再代入坐标运算可求得k.【题目详解】由题意可得,代入坐标可得,解得。填。【题目点拨】本题考查用数量积表示两向量垂直及空间向量的坐标运算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】分析:(1)利用平方关系消参得到曲线,化曲线的极坐标方程为普通方程;(2)利用圆的几何性质,即求圆心到直线距离减去半径即可.详解:(1),(2)圆心(-2,1)到直线距离最小值为点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,本题这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.18、(1);(2)8;(3)存在且【解题分析】分析:(1)根据题意,双曲线的虚轴长为,两条渐近线方程为.易求求双曲线的方程;(2)设直线的斜率,显然,联立得,求出,,可证;(3)设直线方程,联立,(*),∵,方程总有两个解,设,得到,根据得,整理得,由,则符合题目要求,存在直线.详解:(1)双曲线;(2)设直线的斜率,显然,联立得,,,;(3)设直线方程,联立,(*),∵,方程总有两个解,设,,根据得,整理得,∵,∴符合题目要求,存在直线.点睛:本题考查双曲线的求法,直线与双曲线的位置关系,属难题.19、.【解题分析】分析:先求圆心C到直线l的距离d=,再解不等式即得m的范围.详解:圆C的普通方程为(x-m)2+y2=1.直线l的极坐标方程化为ρ(cosθ+sinθ)=,即x+y=,化简得x+y-2=2.因为圆C的圆心为C(m,2),半径为2,圆心C到直线l的距离d=,所以d=<2,解得2-2<m<2+2.点睛:(1)本题主要考查参数方程、极坐标方程和普通方程的互化,考查直线和圆的位置关系,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)判断直线与圆的位置关系常用的是几何法,比较圆心到直线的距离与圆的半径的大小关系:①②③20、(1)2;(2)2.【解题分析】分析:(1)求出函数的导数,求出a的值,根据函数的单调性求出函数的最小值即可;(2)问题转化为,令,,根据函数的单调性求出k的范围即可.详解:(1),由是的极值点,得,.易知在上单调递减,在上单调递增,所有当时,在上取得最小值2.(2)由(1)知,此时,,令,,,令,,在单调递增,且,,在时,,,由,,又,且,所以的最大值为2.点睛:本题考查了函数的单调性、最值问题,考查了导数的应用以及函数恒成立问题,是一道综合题.21、(1),;(2)或.【解题分析】

(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【题目详解】C1的参数方程为消参得普通方程为x-y-a+1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.所以曲线C2的直角坐标方程为y2=4x.(2)曲线C1的参数方程可转化为(t为参数,a∈R),代入曲线C2:y2=4x,得+1-4a=0,由Δ=,得a>0,设A,B对应的参数分别为t1,t2,由|PA|=2|PB|得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=;当t1=-2t2时,解得a=,综上,或.【题目点拨】本题主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论