版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市惠阳高级中学2024届数学高二下期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆短轴的一个端点和两个焦点相连构成一个三角形,若该三角形内切圆的半径为,则该椭圆的离心率为()A. B. C. D.2.设是定义在上的奇函数,且当时,单调递减,若,则的值()A.恒为负值 B.恒等于零C.恒为正值 D.无法确定正负3.的值为()A. B. C. D.4.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a5.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A.2B.1C.0D.不能确定6.不等式无实数解,则的取值范围是()A. B.C. D.7.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为,,则满足的概率为()A. B. C. D.8.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,1AC=AA1=BC=1.若二面角B1-DC-C1的大小为60°,则AD的长为()A.2B.3C.1D.29.已知集合,集合,则集合的子集个数为()A.1 B.2 C.3 D.410.已知双曲线与椭圆:有共同的焦点,它们的离心率之和为,则双曲线的标准方程为()A. B. C. D.11.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法()A. B.C. D.12.在区间[-1,4]内取一个数x,则≥的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平面上画条直线,且满足任何条直线都相交,任何条直线不共点,则这条直线将平面分成__________个部分.14.命题“,”的否定是_______.15.若实数,满足约束条件,则的最大值是.16.已知向量的夹角为,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,且.(1)求的值;(2)求在区间上的最大值.18.(12分)已知命题(其中).(1)若,命题“或”为假,求实数的取值范围;(2)已知是的充分不必要条件,求实数的取值范围.19.(12分)如图,在四棱锥中,底面是矩形,平面,,是的中点.(1)求三棱锥的体积;(2)求异面直线和所成的角(结果用反三角函数值表示)20.(12分)某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;(2)该校有购买该种设备的两种方案,方案:购买甲型3台;方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?21.(12分)如图,在侧棱垂直于底面的三棱柱中,为侧面的对角线的交点,分别为棱的中点.(1)求证:平面//平面;(2)求二面角的余弦值.22.(10分)“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注“微信运动”公众号查看自己及好友每日行走的步数、排行榜,也可以与其他用户进行运动量的或点赞.现从某用户的“微信运动”朋友圈中随机选取40人,记录他们某一天的行走步数,并将数据整理如下:步数/步0~20002001~50005001~80008001~1000010000以上男性人数/人16954女性人数/人03642规定:用户一天行走的步数超过8000步时为“运动型”,否则为“懈怠型”.(1)将这40人中“运动型”用户的频率看作随机抽取1人为“运动型”用户的概率.从该用户的“微信运动”朋友圈中随机抽取4人,记为“运动型”用户的人数,求和的数学期望;(2)现从这40人中选定8人(男性5人,女性3人),其中男性中“运动型”有3人,“懈怠型”有2人,女性中“运动型”有2人,“懈怠型”有1人.从这8人中任意选取男性3人、女性2人,记选到“运动型”的人数为,求的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
利用等面积法得出、、的等式,可得出、的等量关系式,可求出椭圆的离心率.【题目详解】由椭圆短轴的一个端点和两个焦点所构成的三角形面积为,该三角形的周长为,由题意可得,可得,得,因此,该椭圆的离心率为,故选:C.【题目点拨】本题考查椭圆离心率的计算,解题时要结合已知条件列出有关、、的齐次等式,通过化简计算出离心率的值,考查运算求解能力,属于中等题.2、A【解题分析】
依据奇函数的性质,在上单调递减,可以判断出在上单调递减,进而根据单调性的定义和奇偶性的定义,即可判断的符号。【题目详解】因为时,单调递减,而且是定义在上的奇函数,所以,在上单调递减,当时,,由减函数的定义可得,,即有,故选A。【题目点拨】本题主要考查函数的奇偶性和单调性应用。3、C【解题分析】分析:直接利用微积分基本定理求解即可.详解:,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.4、A【解题分析】
令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【题目详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1⋅故选A.【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.5、A【解题分析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.6、C【解题分析】
利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【题目详解】解:由绝对值不等式的性质可得,,即.因为无实数解所以,故选C。【题目点拨】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。7、B【解题分析】
先化简,得到或.利用列举法和古典概型概率计算公式可计算出所求的概率.【题目详解】由,有,得或,则满足条件的为,,,,,,,,,所求概率为.故选B.【题目点拨】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.8、A【解题分析】如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,1,1),C1(0,0,1),设AD=a,则D点坐标为(1,0,a),CD=(1,0,a),CB设平面B1CD的一个法向量为m=(x,y,z).则CB1⋅m=0得m=(a,1,-1),又平面C1DC的一个法向量为n(0,1,0),则由cos60°=m⋅n|m|⋅|n|,得1a2+2=129、D【解题分析】
因为直线与抛物线有两个交点,可知集合的交集有2个元素,可知其子集共有个.【题目详解】由题意得,直线与抛物线有2个交点,故的子集有4个.【题目点拨】本题主要考查了集合的交集运算,子集的概念,属于中档题.10、C【解题分析】
由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案.【题目详解】由椭圆,得,,则,双曲线与椭圆的焦点坐标为,,椭圆的离心率为,则双曲线的离心率为.设双曲线的实半轴长为m,则,得,则虚半轴长,双曲线的方程是.故选C.【题目点拨】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题.11、A【解题分析】先分语文书有种,再分数学书有,故共有=,故选A.12、D【解题分析】
先解不等式,确定解集的范围,然后根据几何概型中的长度模型计算概率.【题目详解】因为,所以,解得,所以.【题目点拨】几何概型中长度模型(区间长度)的概率计算:.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。详解:1条直线将平面分成2个部分,即2条直线将平面分成4个部分,即3条直线将平面分为7个部分,即4条直线将平面分为11个部分,即,所以….根据累加法得所以点睛:本题综合考查了数列的累加法、归纳推理的综合应用。在解题过程中,应用归纳推理是解决较难题目的一种思路和方法,通过分析具体项,找到一般规律,再分析解决问题,属于中档题。14、,【解题分析】
原命题为特称命题,其否定为全称命题.【题目详解】“,”的否定是,故答案为:,【题目点拨】本题考查对特称命题进行否定.对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.15、【解题分析】试题分析:画出不等式组表示的平面区域为下图中的阴影部分,看作两点,连线的斜率,根据上图可求最大值为考点:线性规划。16、3【解题分析】
运用向量的数量积的定义可得⃑⃑⃑⃑,再利用向量的平方即为模的平方,计算可得答案.【题目详解】解:⃑⃑⃑⃑⃑⃑⃑⃑⃑.【题目点拨】本题主要考查平面向量数量积的运算,相对简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解题分析】
(1)直接由求得的值;
(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域.【题目详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是.【题目点拨】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域.18、(1)(2)【解题分析】分析:(1)分别求出的等价命题,,再求出它们的交集;
(2),因为是的充分不必要条件,所以,解不等式组可得.详解::(1),若,命题“或”为假,则命题“且”为真,取交集,所以实数的范围为;
(2),解得,
若是的充分不必要条件,则,则.点睛:本题考查了不等式的解法、集合运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.19、(1);(2).【解题分析】
(1)利用三棱锥的体积计算公式即可得出;(2)由于,可得或其补角为异面直线和所成的角,由平面,可得,再利用直角三角形的边角关系即可得出【题目详解】(1)平面,底面ABCD是矩形,高,,,,故(2),或其补角为异面直线和所成的角,又平面ABCD,,又,平面PAB,,于是在中,,,,异面直线和所成的角是【题目点拨】本题考查三棱锥体积公式的计算,异面直线所成的夹角,属于基础题20、(1)(2)选择B方案【解题分析】【试题分析】(1)由于总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,因此可运用独立事件的概率公式可求得;(2)可将问题转化为两类进行求解:(1)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;(2)若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.解:(1)总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,概率为:;(2)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.21、(1)证明见解析;(2).【解题分析】
(1)利用线线平行证明平面//平面,(2)以C为坐标原点建系求解即可.【题目详解】(1)证明分别为边的中点,可得,又由直三棱柱可知侧面为矩形,可得故有,由直三棱柱可知侧面为矩形,可得为的中点,又由为的中点,可得.由,平面,,平面,得平面,平面,,可得平面平面.(2)为轴建立空间直角坐标系,如图,则,设平面的一个法向量为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度冷冻仓储租赁协议范本
- 2024年企业向个人贷款协议模板
- 2024年科研单位协作协议基本模板
- 2024年全球购销协议格式
- 2024年金融借款担保协议模板解析
- 2024年度商业大厦电梯安装工程协议
- 2024零售业退货协议示例
- 2024年武汉住宅装修协议模
- 2024年专业咨询顾问简明协议样式
- 2024年搅拌站承揽协议模板
- 起重机械自检报告(共5页)
- (精选)活动房产品手册Word版
- 浅析资产评估中税收事项
- 小学作文训练中如何培养学生的观察能力
- 武建〔2005〕273号
- IEEE1588学习笔记
- 危险化学品企业安全风险智能化管控平台建设指南(试行)
- 亚龙YL-335B实训项目书
- 钢管落地卸料平台
- 日语授受关系PPT演示课件
- 殡仪服务试题——
评论
0/150
提交评论