驱动桥毕业设计_第1页
驱动桥毕业设计_第2页
驱动桥毕业设计_第3页
驱动桥毕业设计_第4页
驱动桥毕业设计_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEword文档可自由复制I编辑摘要驱动桥作为汽车的重要组成部分,它的性能的好坏直接影响整车性能。其一般由主减速器、差速器、半轴及桥壳四部分组成,基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。此次设计先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。此次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及材料选取等工作。关键字:驱动桥、双级主减速器、弧齿锥齿轮、

ABSTRACTDrivingaxleassemblyisoneoftheimportantvehiclecarryingpiecesandcandirectlyimpactonthewholevehicle'sperformanceanditseffectivelife.DrivingAxleisconsistedofMainDecelerator,DifferentialMechanism,HalfShaftandAxleHousing.ThebasicfunctionofDrivingAxleistoincreasethetorquetransmittedbyDriveShaftordirectlytransmittedbyGearbox,thendistributesittoleftandrightwheel,andmakethesetwowheelshavethedifferentialfunctionwhichisrequiredinAutomobileDrivingKinematics;besides,theDrivingAxlemustalsostandtheleadhangsdownstrength,thelongitudinalforceandthetransverseforceactedontheroadsurface,theframeorthecompartmentlead.TheconfigurationoftheDrivingAxleisintroducedinthethesisatfirst.OnthebasisoftheanalysisofthestructureandthedevelopingprocessofDrivingAxle,thedesignadoptedtheIntegralDrivingAxle,DoubleReductionGearforMainDecelerator’sdecelerationform,SpiralBevelGearforMainDecelerator’sgear,FullFloatingforAxleandCastingIntegralAxleHousingforAxleHousing.Inthedesign,weaccomplishedthedesignforDoubleReductionGear,taperedPlanetaryGearDifferentialMechanism,FullFloatingAxle,thecheckingofAxleHousingandtheelectionofthematerialandsoon.Keywords:DrivingAxle;DoubleMainDecelerator;SingleReductionFinalDrive

目录摘要 IABSTRACT II目录 III第1章 绪论 11.1选题的目的和意义 11.2研究现状 11.2.1国内现状 11.2.2国外现状 2第2章 驱动桥结构方案分析 4第3章主减速器设计 53.1 主减速器的结构形式 53.1.1 主减速器的齿轮类型 53.1.2 主减速器的减速形式 53.1.3 主减速器主,从动锥齿轮的支承形式 53.2主减速器的基本参数选择与设计计算 63.2.1主减速器计算载荷的确定 63.2.2主减速器基本参数的选择 83.2.3主减速器圆弧锥齿轮的几何尺寸计算 103.2.4 主减速器圆弧锥齿轮的强度计算 103.2.5 主减速器齿轮的材料及热处理 143.2.6主减速器轴承的计算 15第4章 差速器设计 224.1对称式圆锥行星齿轮差速器的差速原理 224.2对称式圆锥行星齿轮差速器的结构 234.3对称式圆锥行星齿轮差速器的设计 244.3.1差速器齿轮的基本参数的选择 244.3.2 差速器齿轮的几何计算 264.3.3 差速器齿轮的强度计算 26第5章驱动半轴的设计 285.1 全浮式半轴计算载荷的确定 285.2全浮式半轴的杆部直径的初选 295.3全浮式半轴的强度计算 295.4半轴花键的强度计算 30第6章驱动桥壳的设计 316.1铸造整体式桥壳的结构 316.2桥壳的受力分析与强度计算 326.2.1桥壳的静弯曲应力计算 326.2.2在不平路面冲击载荷作用下的桥壳强度计算 356.2.3汽车以最大牵引力行驶时的桥壳强度计算 35结论 38致谢 39参考文献 40附录 41PAGEword文档可自由复制I编辑绪论1.1选题的目的和意义驱动桥作为汽车传动系统中的主要部件,实现着减速增扭,改变传动方向,实现差速的作用;驱动桥设计的知识比较广,有利于锻炼学生的能力。随着汽车工业的迅猛发展,车型的多样化、个性化已经成为发展趋势。驱动桥性能直接影响整车的性能和有效使用寿命。一般由桥壳、主减速器、差速器和半壳等元件组成,结构更复杂,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。通过重型货车驱动桥的设计,锻炼学生独立的思考问题和解决问题的能力,同时锻炼学生掌握驱动桥设计的步骤和过程,锻炼学生查阅工具书的能力和自学能力.培养学生严谨的工作态度和工作能力.随着汽车工业的发展及汽车技术的提高,驱动桥的设计,制造工艺都在日益完善。驱动桥也和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产方式达到驱动桥产品的系列化或变型的目的,通过对驱动桥的设计可以更好的学习并掌握现代汽车与机械设计的全面知识和技能。因此,此题目的设计尤为重要。1.2研究现状1.2.1国内现状我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。国内的大多数中小企业中,测绘市场销路较好的产品是它们的主要开发模式。特别是一些小型企业或民营企业由于自身的技术含量低,开发资金的不足,专门测绘、仿制市场上销售较旺的汽车的车桥售往我国不健全的配件市场。这种开发模式是无法从根本上提高我国驱动桥产品开发水平的。中国驱动桥产业发展过程中存在许多问题,许多情况不容乐观,如产业结构不合理、产业集中于劳动力密集型产品;技术密集型产品明显落后于发达工业国家;生产要素决定性作用正在削弱;产业能源消耗大、产出率低、环境污染严重、对自然资源破坏力大;企业总体规模偏小、技术创新能力薄弱、管理水平落后等。我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、仿制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。我国驱动桥产业正处在发展阶段,在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。1.2.2国外现状国外驱动桥主要采用模块化技术和模态分析进行驱动桥的设计分析,模块化设计是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法.以DANA为代表的意大利企业多已采用了该类设计方法,模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。优点是减少设计及工装制造的投入,减少了零件种类,提高规模生产程度,降低制造费用,提高市场响应速度等。国外企业位减少驱动桥的振动特性,对驱动桥进行模态分析,调整驱动桥的强度,改善整车的舒适性和平顺性。20世纪60年代以来,由于电子计算机的迅速发展,有限元法在工程上获得了广泛应用。有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法己经成为求解数学、物理、力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强有力的工具。驱动桥的参数化设计,参数化设计是指设计对象模型的尺寸用变量及其关系表示,而不需要确定具体数值,是CAD技术在实际应用中提出的课题,它不仅可使CAD系统具有交互式绘图功能,还具有自动绘图的功能。目前它是CAD技术应用领域内的一个重要的、且待进一步研究的课题。利用参数化设计手段开发的专用产品设计系统,可使设计人员从大量繁重而琐碎的绘图工作中解脱出来,可以大大提高设计速度,并减少信息的存储量。未来的驱动桥智能化控制系统已经在汽车业得到了快速发展,现代汽车上使用的制动防抱死控制、电子稳定控制装置、驱动力控制系统等系统。驱动力控制系统通过控制发动机转矩和汽车的制动系统等手段来控制驱动力,即在汽车起步,加速时减少驱动力,防止驱动力超过轮胎与路面的附着力而导致车轮空转打滑,保持最佳的驱动力,改善汽车的方向稳定性和操纵性。另外,汽车电子控制系统和总线驱动系统的迅速发展,如线控换挡、线控转向、线控制动等的研究开发。概念车底盘—滑板结构就是总线控制、燃料电池驱动的,加上不同形状车身的轿车,现在已经开始启动,通用公司宣传,这种车有可能在未来10年上市。当线控这一目标实现时,汽车将是一种完全的高新技术产品,发动机、变速器、传动轴、驱动桥、转向机全都不见了,当然四个轮子还是要的。到那时,汽车就可以说是一台装在轮子上的计算机了。

驱动桥结构方案分析由于要求设计的是5吨级的后驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。如图2-1解放驱动桥为中国最早的双级主减速器驱动桥。图2-1解放CA1091型驱动桥

第3章主减速器设计主减速器的结构形式主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的一端连续而平稳的地转向另一端,所以工作平稳,噪声和振动小。而弧齿锥齿轮还存在一些缺点,比如对啮合精度比较敏感,齿轮副的锥顶稍有不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大;但是当主传动比一定时,主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达99%。主减速器的减速形式目前重型汽车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,双级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。主减速器主,从动锥齿轮的支承形式作为一个5吨级的驱动桥,传动的转矩不是很大,所以主动锥齿轮采用悬臂式支承。齿轮以其齿轮大端一侧的轴颈悬臂式地支持与一对轴承的外侧。主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在轴承之间的分布即载荷离两端轴承支承中心间的距离之比例而定。为了使从动锥齿轮背面的支承凸缘有足够的位置设置加强筋及增强支承的稳定性,距离应不小于从动锥齿轮节圆直径的70%。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子大端朝内相向,小端朝外相背。3.2主减速器的基本参数选择与设计计算此处删减NNNNNNNNNNNNNNNN字需要整套设计请联系q:99872184。由式(3-17)可计算=7134N式(3-12)~式(3-17)参考《汽车设计》。主减速器轴承载荷的计算轴承的轴向载荷就是上述的齿轮的轴向力。但如果采用圆锥滚子轴承作支承时,还应考虑径向力所应起的派生轴向力的影响。而轴承的径向载荷则是上述齿轮的径向力,圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸,支承形式和轴承位置已确定,则可计算出轴承的径向载荷。对于采用悬臂式的主动锥齿轮和从动锥齿轮的轴承径向载荷,如图3-4所示轴承A,B的径向载荷分别为R=(3-19)(3-20)根据上式已知=8519.13N,=7134N,a=101.5mm,b=51mm,c=152.5mm所以轴承A的径向力图3-4主减速器轴承的布置尺寸==4370N其轴向力为0轴承B的径向力R==7572N(1)对于轴承A,只承受径向载荷所以采用圆柱滚子轴承42608E,此轴承的额定动载荷Cr为102.85KN,所承受的当量动载荷Q=X·R=1×15976=15976N。所以有公式s(3-21)式中——为温度系数,在此取1.0;——为载荷系数,在此取1.2。所以==2.703×10s。此外对于无轮边减速器的驱动桥来说,主减速器的从动锥齿轮轴承的计算转速为r/min(3-22)式中——轮胎的滚动半径,m——汽车的平均行驶速度,km/h;对于载货汽车和公共汽车可取30~35km/h,在此取32.5km/h。所以有上式可得==163.89r/min而主动锥齿轮的计算转速=163.89×4.444=728r/min。所以轴承能工作的额定轴承寿命:h(3-23)式中——轴承的计算转速,r/min。由上式可得轴承A的使用寿命=6188h若大修里程S定为100000公里,可计算出预期寿命即=h(3-24)所以==3076.9h。和比较,>,故轴承符合使用要求。(2)对于轴承B,在此并不是一个轴承,而是一对轴承,对于成对安装的轴承组的计算当量载荷时径向动载荷系数X和轴向动载荷系数Y值按双列轴承选用,e值与单列轴承相同。在此选用7514E型轴承。在此径向力R=13364N轴向力A=20202N,所以=1.51<e由《机械设计》中表18.7可查得X=1.0,Y=0.45cota=1.6×=1.8当量动载荷Q=(3-25)式中——冲击载荷系数在此取1.2由上式可得Q=1.2(1×13364+1.8×20202)=61618.5N。由于采用的是成对轴承=1.71Cr,所以轴承的使用寿命由式(3-21)和式(3-22)可得===3876.6h>3076.9h=所以轴承符合使用要求。对于从动齿轮的轴承C,D的径向力计算公式见式(3-19)和式(3-20)已知F=25450N,=14000N,=6000N,a=410mm,b=160mm.c=250mm所以,轴承C的径向力:==1040.3N轴承D的径向力:==2310.5N轴承C,D均采用7315E,其额定动载荷Cr为134097N(3)对于轴承C,轴向力A=9662N,径向力R=10401.3N,并且=0.93〉e,在此e值为1.5tana约为0.402,由《机械设计》中表18.7可查得X=0.4,Y=0.4cota=1.6。所以Q==1.2(0.4×9662+1.6×10401.3)=24608.256N。===28963h>所以轴承C满足使用要求。(4)对于轴承D,轴向力A=0N,径向力R=2310.5N,并且=.4187〉e由《机械设计》中表18.7可查得X=0.4,Y=0.4cota=1.6。所以Q==1.2×(1.6×23100.5)=44352.96N===4064.8h>所以轴承D满足使用要求。此节计算内容参考了《汽车车桥设计》和《汽车设计》关于主减速器的有关计算。

差速器设计4.1对称式圆锥行星齿轮差速器的差速原理图4-1差速器差速原理如图4-1所示,对称式锥齿轮差速器是一种行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为;半轴齿轮1和2为从动件其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(图4-1),其值为。于是,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度自转时(图),啮合点A的圆周速度为。啮合点B的圆周速度为。于是+=(+)+(-)即+=2(4-1)若角速度以每分钟转数表示,则(4-2)式(4-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。有式(4-2)还可以得知:=1\*GB3①当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;=2\*GB3②当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。4.2对称式圆锥行星齿轮差速器的结构普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图4-2所示。由于其具有结构简单、工作平稳、制造方便、用于公路汽车上也很可靠等优点,故广泛用于各类车辆上。图4-2普通的对称式圆锥行星齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳4.3对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,所以在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到主减速器从动齿轮轴承支承座及主动齿轮导向轴承座的限制。4.3.1差速器齿轮的基本参数的选择行星齿轮数目的选择载货汽车采用4个行星齿轮。行星齿轮球面半径的确定圆锥行星齿轮差速器的结构尺寸,通常取决于行星齿轮的背面的球面半径,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,因此在一定程度上也表征了差速器的强度。球面半径可按如下的经验公式确定:mm(4-3)式中——行星齿轮球面半径系数,可取3.52~3.99,对于有4个行星齿轮的载货汽车取小值;T——计算转矩,取Tce和Tcs的较小值,N·m.根据上式=2.6=76mm所以预选其节锥距A=75mm行星齿轮与半轴齿轮的选择为了获得较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少。但一般不少于10。半轴齿轮的齿数采用14~25,大多数汽车的半轴齿轮与行星齿轮的齿数比/在1.5~2.0的范围内。差速器的各个行星齿轮与两个半轴齿轮是同时啮合的,因此,在确定这两种齿轮齿数时,应考虑它们之间的装配关系,在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数,之和必须能被行星齿轮的数目所整除,以便行星齿轮能均匀地分布于半轴齿轮的轴线周围,否则,差速器将无法安装,即应满足的安装条件为:(4-4)式中:,——左右半轴齿轮的齿数,对于对称式圆锥齿轮差速器来说,=——行星齿轮数目;——任意整数。在此=12,=20满足以上要求。差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定首先初步求出行星齿轮与半轴齿轮的节锥角,==31°=90°-=59°再按下式初步求出圆锥齿轮的大端端面模数mm====6由于强度的要求在此取m=10mm,得=72mm,=6×20=120mm

压力角α目前,汽车差速器的齿轮大都采用22.5°的压力角,齿高系数为0.8。最小齿数可减少到10,并且在小齿轮(行星齿轮)齿顶不变尖的条件下,还可以由切向修正加大半轴齿轮的齿厚,从而使行星齿轮与半轴齿轮趋于等强度。由于这种齿形的最小齿数比压力角为20°的少,故可以用较大的模数以提高轮齿的强度。在此选22.3°的压力角。行星齿轮安装孔的直径及其深度L行星齿轮的安装孔的直径与行星齿轮轴的名义尺寸相同,而行星齿轮的安装孔的深度就是行星齿轮在其轴上的支承长度,通常取:(4-5)式中:——差速器传递的转矩,N·m;在此取16768N·m——行星齿轮的数目;在此为4——行星齿轮支承面中点至锥顶的距离,mm,≈0.5d,d为半轴齿轮齿面宽中点处的直径,而d≈0.8;——支承面的许用挤压应力,在此取69MPa根据上式=96mm=0.5×96=48mm≈34mm≈37mm差速器齿轮的几何计算详见附录表-4差速器齿轮的强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合状态,只有当汽车转弯或左右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此对于差速器齿轮主要应进行弯曲强度校核。轮齿弯曲强度为=MPa(4-6)式中——差速器一个行星齿轮传给一个半轴齿轮的转矩,其计算式,其中,为差速器的行星齿轮数;——半轴齿轮齿数;、、、——见式(3-9)下的说明;——计算汽车差速器齿轮弯曲应力用的综合系数,由图4-1可查得=0.229图4-2弯曲计算用综合系数根据上式==949MPa<980MPa所以,差速器齿轮满足弯曲强度要求。此节内容图表参考了《汽车车桥设计》中差速器设计一节。

第5章驱动半轴的设计驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。在一般的非断开式驱动桥上,驱动车轮的传动装置就是半轴,半轴将差速器的半轴齿轮与车轮的轮毂联接起来,半轴的形式主要取决半轴的支承形式:普通非断开式驱动桥的半轴,根据其外端支承的形式或受力状况不同可分为半浮式,3/4浮式和全浮式,在此由于是载货汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。全浮式半轴计算载荷的确定全浮式半轴只承受转矩,其计算转矩可有求得,其中,的计算,可根据以下方法计算,并取两者中的较小者。若按最大附着力计算,即(5-1)式中——轮胎与地面的附着系数取0.8;——汽车加速或减速时的质量转移系数,可取1.2~1.4在此取1.3。根据上式=2846N若按发动机最大转矩计算,即(5-2)式中——差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6;——发动机最大转矩,N·m;——汽车传动效率,计算时可取1或取0.9;——传动系最低挡传动比;——轮胎的滚动半径,m。上参数见式(4-1)下的说明。根据上式=2759.59N在此2759.59N==2846.60.46=1320.8N·m5.2全浮式半轴的杆部直径的初选全浮式半轴杆部直径的初选可按下式进行(5-3)根据上式=(32.4~44.3)mm,根据强度要求在此取40mm。5.3全浮式半轴的强度计算首先是验算其扭转应力:MPa(5-4)式中:——半轴的计算转矩,N·m在此取17946.1N·m;——半轴杆部的直径,mm。根据上式==169MPa<=(490~588)MPa所以满足强度要求。5.4半轴花键的强度计算在计算半轴在承受最大转矩时还应该校核其花键的剪切应力和挤压应力。半轴花键的剪切应力为MPa(5-5)半轴花键的挤压应力为MPa(5-6)式中:——半轴承受的最大转矩,N·m,在此取10060N·m;——半轴花键的外径,mm,在此取40mm;——相配花键孔内径,mm,在此取35mm;——花键齿数;在此取20——花键工作长度,mm,在此取80mm;——花键齿宽,mm,在此取3.925mm;——载荷分布的不均匀系数,计算时取0.75。根据上式可计算得==44.7MPa==67.4MPa根据要求当传递的转矩最大时,半轴花键的切应力[]不应超过71.05MPa,挤压应力[]不应超过196MPa,以上计算均满足要求。此节的有关计算参考了《汽车车桥设计》中关于半轴的计算的内容。

第6章驱动桥壳的设计驱动桥壳的主要功用是支承汽车质量,并承受有车轮传来的路面反力和反力矩,并经悬架传给车身,它同时又是主减速器,差速器和半轴的装配体。驱动桥壳应满足如下设计要求:(1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力;(2)在保证强度和刚度的情况下,尽量减小质量以提高行驶的平顺性;(3)保证足够的离地间隙;(4)结构工艺性好,成本低;(5)保护装于其中的传动系统部件和防止泥水浸入;(6)拆装,调整,维修方便。考虑的设计的是载货汽车,驱动桥壳的结构形式采用铸造整体式桥壳。6.1铸造整体式桥壳的结构通常可采用球墨铸铁、可锻铸铁或铸钢铸造。在球铁中加入1.7%的镍,解决了球铁低温(-41°C)冲击值急剧降低的问题,得到了与常温相同的冲击值。为了进一步提高其强度和刚度,铸造整体式桥壳的两端压入较长的无缝钢管作为半轴套筒,并用销钉固定。如图6-1所示,每边半轴套管与桥壳的压配表面共四处,由里向外逐渐加大配合面的直径,以得到较好的压配效果。钢板弹簧座与桥壳铸成一体,故在钢板弹簧座附近桥壳的截面可根据强度要求铸成适当的形状,通常多为矩形。安装制动底板的凸缘与桥壳住在一起。桥壳中部前端的平面及孔用于安装主减速器及差速器总成,后端平面及孔可装上后盖,打开后盖可作检视孔用。铸造整体式桥壳的主要优点在于可制成复杂而理想的形状,壁厚能够变化,可得到理想的应力分布,其强度及刚度均较好,工作可靠,故要求桥壳承载负荷较大的中、重型汽车,适于采用这种结构。尤其是重型汽车,其驱动桥壳承载很重,在此采用球铁整体式桥壳。除了优点之外,铸造整体式桥壳还有一些不足之处,主要缺点是质量大、加工面多,制造工艺复杂,且需要相当规模的铸造设备,在铸造时质量不宜控制,也容易出现废品,故仅用于载荷大的重型汽车。图6-1铸造整体式驱动桥结构6.2桥壳的受力分析与强度计算选定桥壳的结构形式以后,应对其进行受力分析,选择其端面尺寸,进行强度计算。汽车驱动桥的桥壳是汽车上的主要承载构件之一,其形状复杂,而汽车的行驶条件如道路状况、气候条件及车辆的运动状态又是千变万化的,因此要精确地计算出汽车行驶时作用于桥壳各处的应力大小是相当困难的。在通常的情况下,在设计桥壳时多采用常规设计方法,这时将桥壳看成简支梁并校核某些特定断面的最大应力值。6.2.1桥壳的静弯曲应力计算桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而左、右轮胎的中心线,地面给轮胎的反力(双轮胎时则沿双胎中心),桥壳则承受此力与车轮重力之差值,即(),计算简图如6-2所示。图6-2桥壳静弯曲应力计算简图桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩为N·m(6-1)式中——汽车满载时静止于水平路面时驱动桥给地面的载荷,在此5474N;——车轮(包括轮毂、制动器等)重力,N;——驱动车轮轮距,在此为1800m;——驱动桥壳上两钢板弹簧座中心间的距离,在此为1030m.桥壳的危险断面通常在钢板弹簧座附近。通常由于远小于,且设计时不易准确预计,当无数据时可以忽略不计所以=1053N·m而静弯曲应力则为MPa(6-2)式中——见(6-1);——危险断面处(钢板弹簧座附近)桥壳的垂向弯曲截面系数,具体见下:截面图如图6-3所示,其中B=160mm,H=170mm,=25mm,=30mm.图6-3钢板弹簧座附近桥壳的截面图垂向弯曲截面系数:==627127.5mm水平弯曲截面系数:==539127.5mm扭转截面系数:=2×30×135×140=1134000mm垂向弯曲截面系数,水平弯曲截面系数,扭转截面系数的计算参考《材料力学》[9]。关于桥壳在钢板弹簧座附近的危险断面的形状,主要由桥壳的结构形式和制造工艺来确定,从桥壳的使用强度来看,矩形管状(高度方向为长边)的比圆形管状的要好。所以在此采用矩形管状。根据上式桥壳的静弯曲应力=43Mpa6.2.2在不平路面冲击载荷作用下的桥壳强度计算当汽车在不平路面上高速行驶时,桥壳除承受静止状态下那部分载荷外,还承受附加的冲击载荷。在这两种载荷总的作用下,桥壳所产生的弯曲应力为MPa(6-3)式中——动载荷系数,对于载货汽车取2.5;——桥壳在静载荷下的弯曲应力,MPa。根据上式Mpa6.2.3汽车以最大牵引力行驶时的桥壳强度计算为了使计算简化,不考虑侧向力,仅按汽车作直线行驶的情况进行计算,另从安全系数方面作适当考虑。如图5-4所示为汽车以最大牵引力行驶的受力简图。图6-4汽车以最大牵引力行驶的受力简图作用在左右驱动车轮的转矩所引起的地面对于左右驱动车轮的最大切向反作用力共为N(6-4)根据上式可计算得=56755.6N由于设计时某些参数未定而无法计算出汽车加速行驶时的质量转移系数值,而对于载货汽车的后驱动桥可在1.1~1.3范围内选取,在此取1.2。此时后驱动桥桥壳在左、右钢板弹簧座之间的垂向弯矩为N·m(6-5)式中,,,——见式(5-1)下的说明。根据上式==49800N·m由于驱动车轮所承受的地面对其作用的最大切向反作用力,使驱动桥壳也承受着水平方向的弯矩,对于装有普通圆锥齿轮差速器的驱动桥,由于其左、右驱动车轮的驱动转矩相等,故有N·m(6-6)所以根据上式=11776.8N·m桥壳还承受因驱动桥传递驱动转矩而引起的反作用力矩,这时在两钢板弹簧座间桥壳承受的转矩为=N·m(6-7)式中——发动机最大转矩,在此为380N·m;——传动系的最低传动比;——传动系的传动效率,在此取0.9。根据上式可计算得=14955.1N·m所以在钢板弹簧座附近的危险断面处的弯曲应力和扭转应力分别为MPa(6-8)MPa(6-9)式中——分别为桥壳在两钢板弹簧座之间的垂向弯矩和水平弯矩,见式(6-5),和式(6-6);——分别为桥壳在危险断面处的垂向弯曲截面系数,水平弯曲截面系数和扭转截面系数。根据上式可以计算得=80.4+21.8=102.2MPa=13.8MPa由于桥壳的许用弯曲应力[]为300~500MPa,许用扭转应力[]为150~400MPa,所以该设计的桥壳满足这种条件下的强度要求。

结论本设计根据传统驱动桥设计方法,并结合现代设计方法,确定了驱动桥的总体设计方案,先后进行主减速器,差速器,半轴以及驱动桥壳的结构设计和强度校核,手绘草图,并运用AutoCAD软件绘制出装配图和主要零部件的工程图。设计出了5吨级的驱动桥,该驱动桥适用于中型载货汽车和工程车辆等。在设计中充分考虑了优化的结构,最终设计出性能优良且与发动机匹配性比较高的驱动桥,从而使得汽车有效节油,在能源紧缺的未来,此举将意义深远!

致谢毕业设计作为大学四年里的最后一门课程,是对我们大学所学知识的一个系统的回顾与总结,同时也是对我们独立完成设计的一种锻炼。至此,毕业设计即将结束,在这里要衷心感谢我的指导教师李长威老师。在毕业设计期间,李老师给予了我最耐心的帮助,悉心的指导及无微不至的关怀!李老师治学严谨,平易近人,在设计中给了我很多的讲解,特别是在很多细节的地方,对我的错误进行了指导和改正,给了我很大的鼓励与帮助。这两个多月的点点滴滴,特别是通过与老师的交流与沟通所学到的知识与做人的道理是将我宝贵的财富。能够

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论