2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题含解析_第1页
2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题含解析_第2页
2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题含解析_第3页
2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题含解析_第4页
2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省新泰二中、泰安三中、宁阳二中数学高二下期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为()A.①③ B.②④ C.①④ D.②③2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.453.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.644.已知、分别是双曲线的左、右焦点,点是双曲线右支上的点,且,若坐标原点到直线的距离等于实半轴长,则该双曲线的离心率为()A. B. C.2 D.5.若离散型随机变量的概率分布列如下表所示,则的值为()1A. B. C.或 D.6.已知函数的图象如图所示(其中是函数的导函数),下面四个图象中,的图象大致是()A. B. C. D.7.下列函数中,既是偶函数又在上单调递增的函数是()A. B. C. D.8.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的的值为()A.4 B.5 C.6 D.79.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.10.已知为等差数列,,则()A.42 B.40 C.38 D.3611.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件12.在去年的足球甲联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有()①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.A.1个 B.2个 C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分。13.某四棱锥的三视图如图所示,那么该四棱锥的体积为____.14.若复数是纯虚数,则实数_________________.15.观察下列等式:按此规律,第个等式可为__________.16.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.(1)求椭圆的标准方程;(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.18.(12分)已知圆.(Ⅰ)若,求圆的圆心坐标及半径;(Ⅱ)若直线与圆交于,两点,且,求实数的值.19.(12分)已知极坐标系的极点与直角坐标系的原点O重合,极轴与x轴的正半轴重合,若直线l的参数方程:(t为参数),曲线C的极坐标方程为:.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)求直线l被曲线C截得线段的长.20.(12分)设是数列的前项的和,,.(1)求数列的通项公式;(2)令,数列的前项和为,求使时的最小值.21.(12分)已知,.(1)若且的最小值为1,求的值;(2)不等式的解集为,不等式的解集为,,求的取值范围.22.(10分)如图,在多面体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD是边长为2的正方形,△ADE是等腰直角三角形且∠ADE=π2,EF⊥平面ADE(1)求异面直线AE和DF所成角的大小;(2)求二面角B-DF-C的平面角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由题意,分析每一个选项,首先判断单调性,以及,再假设是“追逐函数”,利用题目已知的性质,看是否满足,然后确定答案.【题目详解】对于①,可得,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,此时当k=100时,不存在,故①错误;对于②,若是在上的“追逐函数”,此时,解得,当时,,在是递增函数,若是“追逐函数”则,即,设函数即,则存在,所以②正确;对于③,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,当k=4时,就不存在,故③错误;对于④,当t=m=1时,就成立,验证如下:,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即此时取即,故存在存在,所以④正确;故选B【题目点拨】本题主要考查了对新定义的理解、应用,函数的性质等,易错点是对新定义的理解不到位而不能将其转化为两函数的关系,实际上对新定义问题的求解通常是将其与已经学过的知识相结合或将其表述进行合理转化,从而更加直观,属于难题.2、A【解题分析】列方程组,解得.3、A【解题分析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4、B【解题分析】

利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与c之间的等量关系,进而求出双曲线的离心率.【题目详解】如图,,,依题意,,

且,可知三角形是一个等腰直角三角形,

,,

在中,由余弦定理可得:

化简得,

该双曲线的离心率为.

故选:B.【题目点拨】本题主要考查余弦定理,双曲线的定义、简单几何性质,突出了对计算能力和综合运用知识能力的考查,属中档题.5、A【解题分析】由离散型随机变量ξ的概率分布表知:.解得.故选:A.6、C【解题分析】

根据图象:分,,,,四种情况讨论的单调性.【题目详解】根据图象:当,所以递增,当,所以递减,当,所以递减,当,所以递增,故选:C【题目点拨】本题主要考查导数与函数的图象间的关系,还考查了数形结合的思想和理解辨析的能力,属于常考题.7、D【解题分析】分析:分别判断函数的奇偶性和单调性,即可得到结论.详解:A.函数为奇函数,不满足条件.B.y=﹣x2+1是偶函数,当x>0时,函数为减函数,不满足条件.C.是偶函数又在上单调递减,故不正确.D.y=|x|+1是偶函数,当x>0时,y=x+1是增函数,满足条件.故选D.点睛:本题主要考查函数奇偶性和单调性的判断,结合函数奇偶性和单调性的定义和函数的性质是解决本题的关键.8、B【解题分析】

模拟程序运行,依次计算可得所求结果【题目详解】当,,时,,;当,,时,,;当,,时,,;当,,时,,;故选B【题目点拨】本题考查程序运算的结果,考查运算能力,需注意所在位置9、D【解题分析】

用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.10、B【解题分析】分析:由已知结合等差数列的性质可求,然后由即可求解.详解:,,,,故选:B.点睛:(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.11、A【解题分析】

由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【题目详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【题目点拨】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.12、D【解题分析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,

∴平均说来一队比二队防守技术好,故(1)正确;

在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,

∴二队比一队技术水平更稳定,故(2)正确;

在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,

∴一队有时表现很差,有时表现又非常好,故(3)正确;

在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,

∴二队很少不失球,故(4)正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先还原几何体,再根据四棱锥体积公式求结果.【题目详解】由三视图知该几何体如图,V==故答案为:【题目点拨】本题考查三视图以及四棱锥的体积,考查基本分析求解能力,属基础题.14、2【解题分析】

将复数化简为标准形式,取实部为0得到答案.【题目详解】【题目点拨】本题考查了复数的计算,属于简单题.15、(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)【解题分析】

试题分析:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)…(n+n),每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为•1•3•5…(2n-1).所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=•1•3•5…(2n-1).故答案为16、【解题分析】

几何体是一个圆柱,圆柱的底面是一个直径为1的圆,圆柱的高是1,圆柱的全面积包括三部分,上下底面圆的面积和侧面展开矩形的面积.【题目详解】由三视图知几何体是一个圆柱,圆柱的底面是一个直径为1的圆,圆柱的高是1,故圆柱的全面积是:.【题目点拨】本题考查三视图和圆柱的表面积,关键在于由三视图还原几何体.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)椭圆的标准方程为;(2)的最小值为.【解题分析】试题分析:(1)由题可知)抛物线的焦点为,所以,然后根据离心率可得a值,从而得出椭圆标准方程(2)根据题意则需求出AC和BD的长度表达式,显然可以根据直线与椭圆的弦长公式求得,所以设,,直线的方程为,代入椭圆方程,,同理求出AC的长度,然后化简即得.解析:(1)抛物线的焦点为,所以,又因为,所以,所以,所以椭圆的标准方程为.(2)(i)当直线的斜率存在且时,直线的方程为,代入椭圆方程,并化简得.设,,则,,.易知的斜率为,所以..当,即时,上式取等号,故的最小值为.(ii)当直线的斜率不存在或等于零时,易得.综上,的最小值为.点睛:本题要熟悉椭圆标准方程的求解、直线与椭圆的位置关系问题,在求解椭圆中的最值问题时务必先求出表达式结合不等式即可得出结论,同时直线与椭圆的弦长公式也要非常熟悉18、(Ⅰ),圆心坐标为,半径为;(Ⅱ)【解题分析】

(Ⅰ)将m=1代入圆C的方程,化为标准方程的形式,即可得到圆心坐标和半径;(Ⅱ)将圆C化为标准方程,圆心到直线l的距离为,圆的半径已知,,则有,解方程即得m。【题目详解】(Ⅰ)当时,,化简得,所以圆心坐标为,半径为。(Ⅱ)圆:,设圆心到直线的距离为,则因为,所以即,所以所以【题目点拨】本题考查含有参数的圆的方程,属于基础题。19、(1);.(2).【解题分析】分析:(1)直线的参数方程为:(为参数),消去参数t即可;曲线的极坐标方程为:,利用互化公式即可;(2)几何法求弦长即可.详解:(1)直线的普通方程为,曲线的普通方程为;(2)曲线表示以为圆心,2为半径的圆,圆心到直线的距离,故直线被曲线截得的线段长为.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.20、(1);(2)3【解题分析】

(1)根据结合的递推关系可求解.

(2)由(1)可得,则,用裂项相消可求和,从而解决问题.【题目详解】解:(1)由两式相减得到,,;

当,也符合,综上,.(2)由得,,∴,∴,易证明在时单调递增,且,故的最小值为3.【题目点拨】本题考查根据的递推关系求数列的通项公式和用裂项相消法求和,属于中档题.21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论