版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市海淀区市级名校数学高二第二学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6”,事件“三次抽到的号码都是2”,则()A. B. C. D.2.若将函数的图像向左平移个单位长度,则平移后图像的一个对称中心可以为()A. B. C. D.3.某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:——结伴步行,——自行乘车,——家人接送,——其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中类人数是()A.30 B.40 C.42 D.484.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.5.已知函数的图象在点处的切线为,若也与函数,的图象相切,则必满足()A. B.C. D.6.已知集合,则=()A. B. C. D.7.已知双曲线的离心率为,则m=A.4 B.2 C. D.18.已知函数,若,且对任意的恒成立,则的最大值为A.3 B.4 C.5 D.69.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,是坐标原点,则的内切圆半径为A. B. C. D.10.在平面直角坐标系中,已知抛物线的焦点为,过点的直线与抛物线交于,两点,若,则的面积为()A. B. C. D.11.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.12.在一组样本数据不全相等的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为()A.3 B.0 C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.有一个容器,下部分是高为的圆柱体,上部分是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为___________.14.已知等比数列中,有,,数列前项和为,且则_______.15.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为______.16.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角、、的对边分别是、、,且.(1)求角的大小;(2)若的面积,,,求的值.18.(12分)已知点为抛物线上异于原点的任意一点,为抛物线的焦点,连接并延长交抛物线于点,点关于轴的对称点为.(1)证明:直线恒过定点;(2)如果,求实数的取值范围.19.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)令,记数列的前项和为,证明:.20.(12分)新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.(1)估计在男生中,选择全文的概率.(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;选择全文不选择全文合计男生5女生合计附:,其中.P()0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.82821.(12分)某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,22.(10分)在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
试题分析:由题意得,事件“三次抽到的号码之和为”的概率为,事件同时发生的概率为,所以根据条件概率的计算公式.考点:条件概率的计算.2、A【解题分析】
通过平移得到,即可求得函数的对称中心的坐标,得到答案.【题目详解】向左平移个单位长度后得到的图像,则其对称中心为,或将选项进行逐个验证,选A.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的应用,其中解答中根据三角函数的图象变换,以及熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力.3、A【解题分析】
根据所给的图形,计算出总人数,即可得到A的人数.【题目详解】解:根据选择D方式的有18人,所占比例为15%,得总人数为120人,故选择A方式的人数为120﹣42﹣30﹣18=30人.故选A.【题目点拨】本题考查了条形图和饼图的识图能力,考查分析问题解决问题的能力.4、B【解题分析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.5、D【解题分析】
函数的导数为,图像在点处的切线的斜率为,切线方程为,即,设切线与相切的切点为,,由的导数为,切线方程为,即,∴,.由,可得,且,解得,消去,可得,令,,在上单调递增,且,,所以有的根,故选D.6、D【解题分析】分析:直接利用交集的定义求解.详解:集合,,故选D.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.7、B【解题分析】
根据离心率公式计算.【题目详解】由题意,∴,解得.故选B.【题目点拨】本题考查双曲线的离心率,解题关键是掌握双曲线的标准方程,由方程确定.8、B【解题分析】由,则=可化简为,构造函数,,令,即在单调递增,设,因为,,所以,且,故在上单调递减,上单调递增,所以,又,,即k的最小值为4,故选B.点睛:本题考查函数的恒成立和有解问题,属于较难题目.首先根据自变量x的范围,分离参数和变量,转化为新函数g(x)的最值,通过构造函数求导判断单调性,可知在上单调递减,上单调递增,所以,且,,通过对最小值化简得出的范围,进而得出k的范围.9、D【解题分析】
由抛物线的定义将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值.所以,解得,由内切圆的面积公式,解得.故选D.10、C【解题分析】
设直线的方程为,与抛物线联立,设,由,所以,结合韦达定理可得,,由可得解.【题目详解】因为抛物线的焦点为所以,设直线的方程为,将代入,可得,设,则,,因为,所以,所以,,所以,即,所以,所以的面积,故选C.【题目点拨】本题主要考查了直线与抛物线的位置关系,考查了设而不求的思想,由转化为是解题的关键,属于基础题.11、D【解题分析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【题目详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【题目点拨】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.12、D【解题分析】
根据回归直线方程可得相关系数.【题目详解】根据回归直线方程是可得这两个变量是正相关,故这组样本数据的样本相关系数为正值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=1.故选:D.【题目点拨】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设圆柱底面圆的半径为,分别表示出圆柱和圆锥的体积,利用导数求得极值点,并判断在极值点左右两侧的单调性,即可求得函数的最大值,即为容器的最大容积.【题目详解】设圆柱底面圆的半径为,圆柱体的高为,则圆柱的体积为;圆锥的高为,则圆锥的体积,所以该容器的容积为则,令,即,化简可得,解得,当时,,函数单调递增,当时,,函数单调递减,所以当时,取得最大值;代入可得,故答案为:.【题目点拨】本题考查了导数在体积最值问题中的综合应用,圆柱与圆锥的体积公式应用,属于中档题.14、【解题分析】
首先根据是等比数列得到,根据代入求出的值,再根据求即可.【题目详解】因为是等比数列,,所以.又因为,所以.因为,,所以.则.当时,,,即:,是以首项,的等比数列.所以.故答案为:【题目点拨】本题主要考查根据求数列的通项公式,同时考查等比中项的性质,属于中档题.15、8【解题分析】
双曲线:的右焦点到渐近线的距离为4,可得的值,由条件以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.即,根据可求得答案.【题目详解】由题意可得双曲线的一条渐近线方程为,由焦点到渐近线的距离为4,即,即.双曲线上到的距离为2的点有且仅有1个,即以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.所以,又即,即,所以.所以双曲线的右顶点到左焦点的距离为.所以这个点到双曲线的左焦点的距离为8.故答案为:8【题目点拨】本题考查双曲线的性质,属于中档题.16、36【解题分析】试题分析:将4人分成3组,再将3组分配到3个乡镇,考点:排列组合三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据同角三角函数关系得到2(1﹣cos2A)﹣3cosA=0,解出角A的余弦值,进而得到角A;(2)根据三角形的面积公式和余弦定理得到a=,再结合正弦定理得到最终结果.【题目详解】(1)∵在△ABC中2sin2A+3cos(B+C)=0,∴2(1﹣cos2A)﹣3cosA=0,解得cosA=,或cosA=﹣2(舍去),∵0<A<π,∴A=;(2)∵△ABC的面积S=bcsinA=bc=5,∴bc=20,再由c=4可得b=5,故b+c=9,由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=21,∴a=,∴sinB+sinC∴sinB+sinC的值是.【题目点拨】这个题目考查了同角三角函数的化简求值,考查了三角形面积公式和正余弦定理的应用,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18、(1)证明见解析;(2)【解题分析】
(1)设,计算得到,直线的方程为,得到答案.(2)计算,设,讨论,,三种情况,分别计算得到答案.【题目详解】(1)设,因为,所以,由三点共线得,化简得,即,由此可得,所以直线的方程为,即,因此直线恒过定点.(2),,令,如果,则;如果,则,当时,,时等号成立,从而,即;当时,函数在上单调递减,当时,,故,故,所以,故.综上,实数的取值范围为.【题目点拨】本题考查了抛物线中直线过定点问题,求参数范围,意在考查学生的计算能力和综合应用能力.19、(1);(2)见解析【解题分析】
(1)可以通过取计算出,再通过取时计算出,得出答案。(2)可通过裂项相消求解。【题目详解】(1)当时,有,解得.当时,有,则,整理得:,数列是以为公比,以为首项的等比数列.所以,即数列的通项公式为:.(2)由(1)有,则所以易知数列为递增数列,所以。【题目点拨】本题考察的是求数列的通项公式以及构造数列然后求和,求等比数列的通项公式可以先求首项和公比,求和可以通过裂项相消求解。20、(1);(2)列联表见解析,,理由见解析.【解题分析】
(1)利用古典概型概率公式求解即可;(2)由题先求得选择全文的有20人,不选全文的有30人,即可完成列联表,再代入公式求解,并与7.879比较即可.【题目详解】(1)由题中数据可知,男生总共25人,选择全文的5人,故选择全文的概率为(2)因为选择全文的人数比不选全文的人数少10人,男生、女生共有50人,所以选择全文的有20人,不选全文的有30人,由此完成列联表:选择全文不选择全文全计男生52025女生151025合计203050因为,所以至少有的把握认为选择全文与性别有关.【题目点拨】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电商平台供应链金融服务合同3篇
- 2024版学校食堂厨师聘请服务合同2篇
- 2024年度南昌租房合同房屋维修责任分配3篇
- 2024年云计算服务保密协议3篇
- 二零二四年度版权使用与分成协议书2篇
- 2024年家居装修安装合同2篇
- 2024年度加工承揽合同标的明细与服务内容3篇
- 2024年商业活动策划与执行协议3篇
- 2024年城市亮化标牌协议3篇
- 2024版智能家居系统设备供货与安装合同3篇
- 炸药库租赁合同
- YY/T 1865-2022BRCA基因突变检测试剂盒及数据库通用技术要求(高通量测序法)
- 质量管理小组活动准则TCAQ10201-2020
- 校长德育讲座中职德育工作构建课件
- 全等三角形判定复习教学课件
- 解读突发事件应对法课件
- 统编部编版五年级上册道德与法治第10课第一课时-自强不息的人格修养课件
- (交通运输)铁路军事运输教案
- 冷链物流仓库建设项目可行性研究报告
- 机械设计基础说课市公开课金奖市赛课一等奖课件
- 四年级劳动教育-种植方案(课件)
评论
0/150
提交评论