版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省建水县四校2024届高二数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题:①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联②若二项式的展开式中所有项的系数之和为,则展开式中的系数是③随机变量服从正态分布,则④若正数满足,则的最小值为其中正确命题的序号为()A.①②③ B.①③④ C.②④ D.③④2.函数的值域是A. B. C. D.3.已知函数的导函数为,且满足,则的值为()A.6 B.7 C.8 D.94.x+1A.第5项 B.第5项或第6项 C.第6项 D.不存在5.若的展开式的各项系数和为32,则实数a的值为()A.-2 B.2 C.-1 D.16.已知双曲线:1,左右焦点分别为,,过的直线交双曲线左支于,两点,则的最小值为()A. B.11 C.12 D.167.已知随机变量服从正态分布,且,则()A.-2 B.2 C.4 D.68.点P的直角坐标为(-3,3),则点A.(23,C.(-23,9.已知数列满足,,则()A.-1 B.0 C.1 D.210.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入(万元)8.28.610.011.311.9支出(万元)6.27.58.08.59.8根据表中数据可得回归直线方程,据此估计,该社区一户年收入为20万元家庭的年支出约为()A.15.2 B.15.4 C.15.6 D.15.811.已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0<p1<p2<,则A.<,< B.<,>C.>,< D.>,>12.已知若存在,使得,则称与互为“1度零点函数”,若与互为“1度零点函数”,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在1x-114.若定义在上的函数,则________.15.如图所示的伪代码,最后输出的值为__________.16.由海军、空军、陆军各3名士兵组成一个有不同编号的的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。18.(12分)如图,在四棱锥中,平面,,,且,,,点在上.(1)求证:;(2)若,求三棱锥的体积.19.(12分)如图,圆柱的轴截面是,为下底面的圆心,是母线,.(1)证明:平面;(2)求三棱锥的体积.20.(12分)已知函数,其中,且曲线在点处的切线平行于轴.(1)求实数的值;(2)求函数的单调区间.21.(12分)为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共名进行调查,调查结果如下:支持反对合计男性女性合计(1)根据以上数据,判断是否有的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;(2)现从参与调查的女户主中按此项工作的“支持”与“反对”态度用分层抽样的方法抽取人,从抽取的人中再随机地抽取人赠送小礼品,记这人中持“支持”态度的有人,求的分布列与数学期望.参考公式:,其中.参考数据:22.(10分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.【题目详解】①,则有的把握确认这两类指标间有关联,①正确;②令,则所有项的系数和为:,解得:则其展开式通项为:当,即时,可得系数为:,②错误;③由正态分布可知其正态分布曲线对称轴为,③正确;④,,(当且仅当,即时取等号),④正确.本题正确选项:【题目点拨】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.2、A【解题分析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。3、C【解题分析】
求出,再把代入式子,得到.【题目详解】因为,所以.选C.【题目点拨】本题考查对的理解,它是一个常数,通过构造关于的方程,求得的值.4、C【解题分析】
根据题意,写出(x+1x)10展开式中的通项为Tr+1,令x【题目详解】解:根据题意,(x+1x)令10-2r=0,可得r=5;则其常数项为第5+1=6项;故选:C.【题目点拨】本题考查二项式系数的性质,解题的关键是正确应用二项式定理,写出二项式展开式,其次注意项数值与r的关系,属于基础题.5、D【解题分析】
根据题意,用赋值法,在中,令可得,解可得a的值,即可得答案.【题目详解】根据题意,的展开式的各项系数和为32,令可得:,解可得:,故选:D.【题目点拨】本题考查二项式定理的应用,注意特殊值的应用.6、B【解题分析】
根据双曲线的定义,得到,再根据对称性得到最小值,从而得到的最小值.【题目详解】根据双曲线的标准方程,得到,根据双曲线的定义可得,,所以得到,根据对称性可得当为双曲线的通径时,最小.此时,所以的最小值为.故选:B.【题目点拨】本题考查双曲线的定义求线段和的最小值,双曲线的通径,考查化归与转化思想,属于中档题.7、D【解题分析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.8、D【解题分析】
先判断点P的位置,然后根据公式:ρ2ρ,根据点P的位置,求出θ.【题目详解】因为点P的直角坐标为(-3,3),所以点Pρ=(-3)2+所以θ=2kπ+56【题目点拨】本题考查了点的直角坐标化为极坐标,关键是要知道点的具体位置.9、A【解题分析】分析:先根据已知推算出数列的周期,再求的值.详解:,所以因为,所以点睛:(1)本题主要考查数列的递推和周期,意在考查学生对这些知识的掌握水平.(2)求数列的某一项时,如果n的取值比较大,一般与数列的周期有关,所以要推算数列的周期.10、C【解题分析】
由于回归直线方程过中心点,所以先求出的值,代入回归方程中,求出,可得回归直线方程,然后令可得结果【题目详解】解:因为,所以,所以回归直线方程为所以当时,故选:C【题目点拨】此题考查线性回归方程,涉及平均值的计算,属于基础题11、A【解题分析】∵,∴,∵,∴,故选A.【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列,组合与概率知识求出取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确.12、B【解题分析】
通过题意先求出函数的零点,根据计算出函数的零点范围,继而求出实数的取值范围【题目详解】令,当时,或,当时,解得,,若存在为“度零点函数”,不妨令由题意可得:或即或设,当时,,是减函数当时,,是增函数,当时,,由题意满足存在性实数的取值范围为故选【题目点拨】本题给出了新定义,按照新定义内容考查了函数零点问题,结合零点运用导数分离参量,求出函数的单调性,给出参量的取值范围,本题较为综合,需要转化思想和函数思想,有一定难度。二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
先求出二项式x+1【题目详解】二项式x+15的展开式的通项为∴1x-1x故答案为1.【题目点拨】对于含有两个括号的展开式的项的问题,求解时可分别求出每个二项式的展开式的通项,然后采用组合(即“凑”)的方法得到所求的项,解题时要做到细致、不要漏掉任何一种情况.14、【解题分析】由定积分的几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,,,故答案为.15、21【解题分析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得结束循环,输出.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16、2592【解题分析】
假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,有12种填入方法,再每个a,b,c填入3名士兵均有种,根据分步计数原理可得.【题目详解】解:假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,则有种,每个a,b,c填入3名士兵均有种,故共有,故答案为:2592【题目点拨】本题考查了分步计数原理,考查了转化能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)本次考试复赛资格最低分数线应划为100分;(2)5人,2人;(3)元.【解题分析】
(1)求获得复赛资格应划定的最低分数线,即是求考试成绩中位数,只需满足中位数两侧的频率之和均为0.5即可;(2)先确定得分在区间与的频率之比,即可求解;(3)先确定的可能取值,再求出其对应的概率,即可求出分布列和期望.【题目详解】(1)由题意知的频率为:,的频率为:所以分数在的频率为:,从而分数在的,假设该最低分数线为由题意得解得.故本次考试复赛资格最低分数线应划为100分。(2)在区间与,,在区间的参赛者中,利用分层抽样的方法随机抽取7人,分在区间与各抽取5人,2人,结果是5人,2人.(3)的可能取值为2,3,4,则:,从而Y的分布列为Y260023002000(元).【题目点拨】本题主要考查频率分布直方图求中位数,以及分层抽样和超几何分布等问题,熟记相关概念,即可求解,属于常考题型.18、(1)证明见解析;(2).【解题分析】
(1)证明,转化成证明平面即可.(2)根据,可得,从而得出体积.【题目详解】证明:(1)取中点,连结,则,,四边形为平行四边形,,又,,,又,,平面,.解:(2),,三棱锥的体积为:.【题目点拨】本题考查了线线垂直的证明,通常转化成证明线面垂直.三棱锥体积的计算,选择不同的底对应的顶点,得到的体积相同.那么通常选择已知的高和底从而求出体积.19、(1)证明见解析;(2).【解题分析】
(1)连接交于点,连接,利用三角形中位线定理证明,由线面平行的判定定理可得结论;(2)先利用面面垂直的性质证明平面,可得点到平面的距离为,由,结合棱锥的体积公式可得结果.【题目详解】(1)如图,连接交于点,连接.四边形是矩形,是的中点.点为的中点,.又平面,平面,平面.(2),,.在三棱柱中,由平面,得平面平面.又平面平面,平面,点到平面的距离为,且..【题目点拨】本题主要考查线面平行的判定定理、以及棱锥体积,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20、(1)(2)单调增区间为:函数单调减区间为【解题分析】
(1)根据题可知,由此计算出的值;(2)写出并因式分解,讨论取何范围能使,由此求出单调递增、递减区间.【题目详解】(1)由题意,曲线在点处的切线斜率为0.,,所以;(2)由(1)知,,,当时,,当时,,当时,,所以函数单调增区间为:;函数单调减区间为:.【题目点拨】本题考查导数的几何意义的运用以及求解具体函数的单调区间,难度较易.已知曲线某点处切线斜率求解参数时,可通过先求导,然后根据对应点处切线斜率等于导数值求解出参数.21、(1)没有的把握认为对此项工作的“支持”与“反对”态度与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省淮北市五校联考2022-2023学年八年级下学期第一次月考历史试题(解析版)
- 2024年物业服务管理合同(智能化系统)
- 2024年水果订购合同:柑橘专篇
- 2024年度文化产业股权并购委托转让协议6篇
- 2024年度文艺晚会导演聘用合同正式版本3篇
- 2025超市管理咨询居间的合同范本
- 2024年标准协议模板版B版
- 2024年土地平整工程与现代农业装备合作合同3篇
- 2025建筑装饰工程施工合同示范文本
- 2024年债权减免与重组契约3篇
- 2024年度师德师风工作计划
- 工程质量管理制度
- 初中音乐教师个人成长专业发展计划
- 十八项医疗核心制度考试题与答案
- GB/T 44705-2024道路运输液体危险货物罐式车辆罐体清洗要求
- 护理类医疗设备采购 投标方案(技术方案)
- 2024年法律职业资格考试主观题试卷及答案指导
- 员工合同劳动合同范例
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读 课件
- 口腔连锁机构店长聘用协议
- 南京工业大学《大地测量学基础》2023-2024学年第一学期期末试卷
评论
0/150
提交评论