2024届陕西咸阳市数学高二第二学期期末学业质量监测试题含解析_第1页
2024届陕西咸阳市数学高二第二学期期末学业质量监测试题含解析_第2页
2024届陕西咸阳市数学高二第二学期期末学业质量监测试题含解析_第3页
2024届陕西咸阳市数学高二第二学期期末学业质量监测试题含解析_第4页
2024届陕西咸阳市数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西咸阳市数学高二第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若,则正数的取值范围为()A. B. C. D.2.若实数a,b满足a+b=2,则的最小值是()A.18 B.6 C.2 D.43.若函数,则()A.0 B.8 C.4 D.64.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()2017201620152014……654321403340314029…………11975380648060………………201612816124……362820………A. B.C. D.5.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为A.89 B.25 C.96.在的展开式中,项的系数为().A. B. C. D.7.函数f(x)=的图象大致为()A. B.C. D.8.下图是一个算法流程图,则输出的x值为A.95 B.47 C.23 D.119.已知双曲线my2-x2=1(m∈R)与椭圆+x2=1有相同的焦点,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±3x10.给出下列命题:①命题“若,则方程无实根”的否命题;②命题“在中,,那么为等边三角形”的逆命题;③命题“若,则”的逆否命题;④“若,则的解集为”的逆命题;其中真命题的序号为()A.①②③④ B.①②④ C.②④ D.①②③11.若复数,其中i为虚数单位,则=A.1+i B.1−i C.−1+i D.−1−i12.已知定义在上的函数的周期为6,当时,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正弦曲线上一点,正弦曲线以点为切点的切线为直线,则直线的倾斜角的范围是______.14.已知地球半径为,地球上两个城市、,城市位于东经30°北纬45°,城市位于西经60°北纬45°,则城市、之间的球面距离为________15.已知一扇形的面积是8cm2,周长是12cm,则该扇形的圆心角α(0<α<π)的弧度数是_______16.已知函数有两个零点,,则下列判断:①;②;③;④有极小值点,且.则正确判断的个数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,圆C的参数方程为(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ-)=.若直线l与圆C有两个公共点,求实数m的取值范围.18.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄支持“延迟退休”的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.19.(12分)如图,四棱锥,底面为直角梯形,,,,.(1)求证:平面平面;(2)若直线与平面所成角为,求直线与平面所成角的正弦值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数).(Ⅰ)求曲线的普通方程;(Ⅱ)经过点作直线,与曲线交于两点.如果点恰好为线段的中点,求直线的方程.21.(12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为.喜欢盲拧不喜欢盲拧总计男10女20总计100表(1)并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:完成时间(分钟)[0,10)[10,20)[20,30)[30,40]频率0.20.40.30.1表(2)(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表(2)中完成时间在[30,40]内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.(参考公式:,其中)P(K2≥k0)0.100.050.0250.0100.0050.001k02.7063.8415.0246.6357.87910.82822.(10分)已知点,椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.(Ⅰ)求的方程;(Ⅱ)设过点的直线与相交于,两点,求面积的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:先求出最大值,再求出的最大值,从而化恒成立问题为最值问题.详解:令,,令,解得,在、单调递增,在单调递减,又,又,当时,令,解得,在上单调递增,在上单调递减.;当时,无最大值,即不符合;故有,解得,故.故选:C.点睛:本题考查了函数的性质的判断与应用,同时考查了恒成立问题与最值问题的应用.2、B【解题分析】

由重要不等式可得,再根据a+b=2,代入即可得解.【题目详解】解:由实数a,b满足a+b=2,有,当且仅当,即时取等号,故选:B.【题目点拨】本题考查了重要不等式的应用及取等的条件,重点考查了运算能力,属基础题.3、B【解题分析】

根据函数解析式可求得,结合函数奇偶性可得到,从而得到结果.【题目详解】由题意得:本题正确选项:【题目点拨】本题考查函数性质的应用,关键是能够根据解析式确定为定值,从而求得结果.4、B【解题分析】

数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论.【题目详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故从右到左第1行的第一个数为:2×2﹣1,从右到左第2行的第一个数为:3×20,从右到左第3行的第一个数为:4×21,…从右到左第n行的第一个数为:(n+1)×2n﹣2,第2017行只有M,则M=(1+2017)•22015=2018×22015故答案为:B.【题目点拨】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解题分析】

利用条件概率的计算公式即可得出.【题目详解】设事件A表示某地四月份吹东风,事件B表示四月份下雨.根据条件概率计算公式可得在吹东风的条件下下雨的概率P(B|A)=8故选:A【题目点拨】本题主要考查条件概率的计算,正确理解条件概率的意义及其计算公式是解题的关键,属于基础题.6、A【解题分析】二项式展开式的通项为。所以展开式中项的系数为.选.7、D【解题分析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【题目点拨】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.8、B【解题分析】运行程序,,判断是,,,判断是,,判断是,,判断是,,判断否,输出.9、A【解题分析】试题分析:由于的焦点为.双曲线可化为.由题意可得.依题意得.所以双曲线方程为.所以渐近线方程为.故选A.考点:1.椭圆的性质.2.双曲线的性质.3.双曲线的标准方程.10、A【解题分析】

①写出其否命题,再判断真假;②写出其逆命题,再判断真假;③根据原命题与逆否命题真假性相同,直接判断原命题的真假即可;④写出其逆命题,再判断真假.【题目详解】①命题“若,则方程无实根”的否命题为:“若,则方程有实根”,为真命题,所以正确.②命题“在中,,那么为等边三角形”的逆命题为:“若为等边三角形,则”为真命题,所以正确.③命题“若,则”为真命题,根据原命题与逆否命题真假性相同,所以正确.④“若,则的解集为”的逆命题为:“若的解集为,则”当时,不是恒成立的.当时,则解得:,所以正确.故选:A【题目点拨】本题考查四种命题和互化和真假的判断,属于基础题.11、B【解题分析】试题分析:,选B.【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.12、C【解题分析】

根据函数的周期性以及时的解析式结合,可得,利用对数的运算性质,化简可得答案.【题目详解】∵定义在上的函数的周期为6,当时,,又∵,∴,.即,故选C.【题目点拨】本题主要考查利用函数的周期性求函数的值,考查了学生的计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由可得,直线的斜率为,即可求出答案.【题目详解】由可得,切线为直线的斜率为:设直线的倾斜角,则且.所以故答案为:【题目点拨】本题考查求曲线上的切线的倾斜角的范围,属于中档题.14、【解题分析】

欲求坐飞机从A城市飞到B城市的最短距离,即求出地球上这两点间的球面距离即可.A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.即可得到答案.【题目详解】由已知地球半径为R,则北纬45°的纬线圈半径为,

又∵两座城市的经度分别为东经30°和西经60°,

故连接两座城市的弦长,

则A,B两地与地球球心O连线的夹角,

则A、B两地之间的距离是.

故答案为:.【题目点拨】本题考查球面距离及其他计算,考查空间想象能力,是基础题.15、1【解题分析】

设半径为,则,,可解出对答案.【题目详解】设半径为,则,,由有代入有:,解得或,当时,,当时,,又,所以.故答案为:【题目点拨】本题考查扇形的面积,弧度制公式等,属于容易题.16、1【解题分析】

对函数进行求导,然后分类讨论函数的单调性,由题意可以求出的取值范围,然后对四个判断逐一辨别真假即可.【题目详解】,.当时,,函数是单调递增函数,而,所以函数只有一个零点,不符合题意;当时,当时,,函数单调递增,当时,,函数递减,故函数的最小值为,要想函数有两个零点,则必有,故判断①不对;对于②:,取,,所以,故判断②不对;对于④:构造函数,,所以函数是上单调递增,故,而,所以,故本判断是正确的;对于③:因为,而,所以有,故本判断是错误的,故正确的判断的个数为1.【题目点拨】本题考查了利用导数研究函数的零点、极值点,考查了推理论证能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解题分析】分析:先求圆心C到直线l的距离d=,再解不等式即得m的范围.详解:圆C的普通方程为(x-m)2+y2=1.直线l的极坐标方程化为ρ(cosθ+sinθ)=,即x+y=,化简得x+y-2=2.因为圆C的圆心为C(m,2),半径为2,圆心C到直线l的距离d=,所以d=<2,解得2-2<m<2+2.点睛:(1)本题主要考查参数方程、极坐标方程和普通方程的互化,考查直线和圆的位置关系,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)判断直线与圆的位置关系常用的是几何法,比较圆心到直线的距离与圆的半径的大小关系:①②③18、(1)列联表见解析,在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”有差异.(2)①.②分布列见解析,.【解题分析】

分析:(1)根据频率分布直方图得到45岁以下与45岁以上的人数,由此可得列联表,求得后在结合临界值表可得结论.(2)①结合条件概率的计算方法求解;②由题意可得的可能取值为0,1,2,分别求出对应的概率后可得分布列和期望.详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故可得列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100由列联表可得,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.设“抽到1人是45岁以下”为事件A,“抽到的另一人是45岁以上”为事件B,则,∴,即抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率为.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.由题意得的可能取值为0,1,2.,,.故随机变量的分布列为:012所以.19、(1)见解析(2)【解题分析】分析:(1)根据题意,设法证明平面,即可证得平面平面;;(2)如图以为原点建立空间直角坐标系,利用空间向量求直线与平面所成角的正弦值.详解:(1)证明:因为为直角梯形,,又因为,所以,所以,所以,又因为,,所以平面,又因为平面,所以平面平面;(2)作于,因为,所以为中点,由(1)知平面平面,且平面平面,所以平面,所以为直线与平面所成的角,设,因为,,所以,如图以为原点建立空间直角坐标系,则,,,9分设平面法向量,则,取,则,所以平面一个法向量,设与平面所成角为,则,所以直线与平面所成角为正弦值为.点睛:本题考查直线与直线,直线与平面,平面与平面垂直等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数学结合思想,化归与转化思想20、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)利用求曲线的普通方程;(Ⅱ)经过点的直线的参数方程为(为参数),代入曲线中,可得,利用韦达定理求出,结合参数的几何意义得,计算整理即可得到直线的斜率,进而通过点斜式求出直线方程。【题目详解】(Ⅰ)由,且,所以的普通方程为.(Ⅱ)设直线的倾斜角为,则经过点的直线的参数方程为(为参数),代入曲线中,可得.由的几何意义知.因为点在椭圆内,这个方程必有两个实根,所以.由是中点,所以,即,解得所以直线的斜率为,所直线的方程是,即.【题目点拨】本题考查参数方程与普通方程的互化,直线的参数方程,解题的一般思路是求出直线的参数方程代入圆锥曲线的普通方程,结合题意通过韦达定理解答。21、(I)表(1)见解析,在犯错误的概率不超过0.001的前提下认为喜欢盲拧与性别有关;(II)【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论