版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省平顶山市、许昌市、汝州数学高一第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.642.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.3.已知向量与的夹角为,,,当时,实数为()A. B. C. D.4.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.5.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.6.在中,角,,所对的边分别为,,,,的平分线交于点,且,则的最小值为()A.8 B.9 C.10 D.77.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.8.下列关于函数()的叙述,正确的是()A.在上单调递增,在上单调递减B.值域为C.图像关于点中心对称D.不等式的解集为9.为三角形ABC的一个内角,若,则这个三角形的形状为()A.锐角三角形 B.钝角三角形C.等腰直角三角形 D.等腰三角形10.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.12.在梯形中,,,设,,则__________(用向量表示).13.设常数,函数,若的反函数的图像经过点,则_______.14.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.15.在数列中,,则___________.16.设函数的最小值为,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,求函数的值;(2)求函数的值域.18.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.19.设向量,,其中,,且.(1)求实数的值;(2)若,且,求的值.20.已知内角的对边分别是,若,,.(1)求;(2)求的面积.21.已知,且(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【题目详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【题目点拨】本题考查等差数列、等比数列性质的应用,属于基础题.2、B【解题分析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【题目详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.3、B【解题分析】
利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【题目详解】,,向量与的夹角为,,,,解得.故选:B.【题目点拨】本题考查利用向量垂直求参数,考查计算能力,属于基础题.4、B【解题分析】
设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【题目详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【题目点拨】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.5、C【解题分析】
依次分析选项的奇偶性和在区间上的单调性即可得到答案.【题目详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【题目点拨】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.6、B【解题分析】
根据三角形的面积公式,建立关于的关系式,结合基本不等式,利用1的代换,即可求解,得到答案.【题目详解】由题意,因为,的平分线交于点,且,所以,整理得,得,则,当且仅当,即,所以的最小值9,故选B.【题目点拨】本题主要考查了基本不等式的应用,其中合理利用1的代换,结合基本不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8、D【解题分析】
运用正弦函数的一个周期的图象,结合单调性、值域和对称中心,以及不等式的解集,可得所求结论.【题目详解】函数(),在,单调递增,在上单调递减;值域为;图象关于点对称;由可得,解得:.故选:D.【题目点拨】本题考查三角函数的图象和性质,考查逻辑思维能力和运算能力,属于常考题.9、B【解题分析】试题分析:由,两边平方得,即,又,则,所以为第三、四象限角或轴负半轴上的角,所以为钝角.故正确答案为B.考点:1.三角函数的符号、平方关系;2.三角形内角.10、C【解题分析】
求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【题目详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【题目点拨】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由图可知,12、【解题分析】
根据向量减法运算得结果.【题目详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【题目点拨】本题考查向量表示,考查基本化解能力13、1【解题分析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【题目详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【题目点拨】本题考查了反函数,熟记其性质是关键,属基础题.14、或【解题分析】
由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【题目详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【题目点拨】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.15、-1【解题分析】
首先根据,得到是以,的等差数列.再计算其前项和即可求出,的值.【题目详解】因为,.所以数列是以,的等差数列.所以.所以,,.故答案为:【题目点拨】本题主要考查等差数列的判断和等差数列的前项和的计算,属于简单题.16、.【解题分析】
确定函数的单调性,由单调性确定最小值.【题目详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【题目点拨】本题考查分段函数的单调性.由单调性确定最小值,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1),.(2)由(1),,∴函数的值域为[1,2].18、(1)奇函数;周期为,单调递减速区间:(2)证明见解析【解题分析】
(1)直接利用函数的性质写出结果.(2)利用单调性的定义和三角函数关系式的变换求出结果.【题目详解】(1)奇函数;周期为,单调递减区间:(2)任取,,,有因为,所以,于是,,从而,.因此余切函数在区间上单调递减.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(1)(2)【解题分析】
(1)利用向量模的坐标求法可得,再利用同角三角函数的基本关系即可求解.(2)根据向量数量积的坐标表示以及两角差的余弦公式的逆应用可得,进而求出,根据同角三角函数的基本关系即可求解.【题目详解】(1)由知所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知.由,得,即.因为,所以,所以.所以,因此.【题目点拨】本题考查了向量数量积的坐标表示、两角差的余弦公式以及同角三角函数的基本关系,属于基础题.20、(1);(2).【解题分析】
(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【题目详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.21、(1);(2).【解题分析】
(1)由条件先求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年高端餐厅员工聘用合同示范3篇
- 二零二五版冻猪肉储备政府采购合同争议解决与仲裁条款2篇
- 二零二五版商业地产改造与招商合作合同3篇
- 二零二五年度脚手架施工材料供应与租赁合同3篇
- 二零二五版新型让与担保合同-供应链金融支持协议2篇
- 二零二五版家政服务员与雇主及家政协会三方合作合同3篇
- 二零二五版公司间股权置换、转让与资本运作合同3篇
- 二零二五年教育机构教学质量兜底服务合同范本3篇
- 二零二五版二手房贷款买卖合同范本:适用于房产交易中的担保合同2篇
- 二零二五年度购物卡电子支付解决方案合同3篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- 安徽大学大学生素质教育学分认定办法
- 巴布亚新几内亚离网光储微网供电方案
- 高度限位装置类型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生儿预防接种护理质量考核标准
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
评论
0/150
提交评论