版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东菏泽市数学高一第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.2.已知,函数的最小值是()A.4 B.5 C.8 D.63.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.4.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.5.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.6.某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41 B.42 C.43 D.447.如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,垂足为E,点F是PB上一点,则下列判断中不正确的是()﹒A.平面PAC B. C. D.平面平面PBC8.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.9.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品10.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.45二、填空题:本大题共6小题,每小题5分,共30分。11.“”是“数列依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).12.不等式x(2x﹣1)<0的解集是_____.13.一个等腰三角形的顶点,一底角顶点,另一顶点的轨迹方程是___14.等比数列中前n项和为,且,,,则项数n为____________.15.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).16.不等式的解集为_________________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若=12,其中O为坐标原点,求|MN|.18.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.19.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.21.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
在空间直角坐标系中,点关于轴对称的点的坐标为.【题目详解】根据对称性,点关于轴对称的点的坐标为.故选A.【题目点拨】本题考查空间直角坐标系和点的对称,属于基础题.2、A【解题分析】试题分析:由题意可得,满足运用基本不等式的条件——一正,二定,三相等,所以,故选A考点:利用基本不等式求最值;3、C【解题分析】
作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【题目详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【题目点拨】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.4、B【解题分析】
解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=45、B【解题分析】
依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【题目详解】设阴影区域的面积为,由题意可得,则.故选:B.【题目点拨】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.6、A【解题分析】
由系统抽样.先确定分组间隔,然后编号成等差数列来求所抽取号码.【题目详解】由题知分组间隔为以,又第1组中抽取的号码为5,所以第7组中抽取的号码为.故选:A.【题目点拨】本题考查系统抽样,掌握系统抽样的概念与方法是解题基础.7、C【解题分析】
根据线面垂直的性质及判定,可判断ABC选项,由面面垂直的判定可判断D.【题目详解】对于A,PA垂直于以AB为直径的圆所在平面,而底面圆面,则,又由圆的性质可知,且,则平面PAC.所以A正确;对于B,由A可知,由题意可知,且,所以平面,而平面,所以,所以B正确;对于C,由B可知平面,因而与平面不垂直,所以不成立,所以C错误.对于D,由A、B可知,平面PAC,平面,由面面垂直的性质可得平面平面PBC.所以D正确;综上可知,C为错误选项.故选:C.【题目点拨】本题考查了线面垂直的性质及判定,面面垂直的判定定理,属于基础题.8、B【解题分析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【题目详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【题目点拨】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.9、B【解题分析】
根据对立事件的概念,选出正确选项.【题目详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【题目点拨】本小题主要考查对立事件的理解,属于基础题.10、C【解题分析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.二、填空题:本大题共6小题,每小题5分,共30分。11、必要非充分【解题分析】
通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【题目详解】因为数列依次成等差数列,所以根据等差数列下标公式,可得,当,时,满足,但不能得到数列依次成等差数列所以综上,“”是“数列依次成等差数列”的必要非充分条件.故答案为:必要非充分.【题目点拨】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.12、【解题分析】
求出不等式对应方程的实数根,即可写出不等式的解集,得到答案.【题目详解】由不等式对应方程的实数根为0和,所以该不等式的解集是.故答案为:.【题目点拨】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】
设出点C的坐标,利用|AB|=|AC|,建立方程,根据A,B,C三点构成三角形,则三点不共线且B,C不重合,即可求得结论.【题目详解】设点的坐标为,则由得,化简得.∵A,B,C三点构成三角形∴三点不共线且B,C不重合因此顶点的轨迹方程为.故答案为【题目点拨】本题考查轨迹方程,考查学生的计算能力,属于基础题.14、6【解题分析】
利用等比数列求和公式求得,再利用通项公式求解n即可【题目详解】,代入,,得,又,得.故答案为:6【题目点拨】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题15、②④.【解题分析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【题目详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.16、【解题分析】
根据绝对值定义去掉绝对值符号后再解不等式.【题目详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【题目点拨】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(3);(3)3.【解题分析】试题分析:(3)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(3)由题意可得,经过点M、N、A的直线方程为y=kx+3,根据直线和圆相交的弦长公式进行求解试题解析:(3)由题意可得,直线l的斜率存在,设过点A(2,3)的直线方程:y=kx+3,即:kx-y+3=2.由已知可得圆C的圆心C的坐标(3,3),半径R=3.故由,解得:.故当,过点A(2,3)的直线与圆C:相交于M,N两点.(3)设M;N,由题意可得,经过点M、N、A的直线方程为y=kx+3,代入圆C的方程,可得,∴,∴,由,解得k=3,故直线l的方程为y=x+3,即x-y+3=2.圆心C在直线l上,MN长即为圆的直径.所以|MN|=3考点:直线与圆的位置关系;平面向量数量积的运算18、(Ⅰ);(Ⅱ).【解题分析】
(1)本题可根据三角函数相关公式将化简为,然后根据即可求出角的大小;(2)本题首先可设的中点为,然后根据向量的平行四边形法则得到,再然后通过化简计算即可求得,最后通过三角形面积公式即可得出结果.【题目详解】(1)由正弦定理边角互换可得,所以.因为,所以,即,即,整理得.因为,所以,所以,即,所以.因为,所以,即.(2)设的中点为,根据向量的平行四边形法则可知所以,即,因为,,所以,解得(负值舍去).所以.【题目点拨】本题考查三角恒等变换公式及解三角形相关公式的应用,考查了向量的平行四边形法则以及向量的运算,考查了化归与转化思想,体现了综合性,是难题.19、(1)(2)【解题分析】
(1)先由题意得到,求出,再由,作出,得到数列为等比数列,进而可求出其通项公式;(2)先由(1)得到,再由错位相减法,即可求出结果.【题目详解】解:(1)由题可得.当时,,即.由题设,,两式相减得.所以是以2为首项,2为公比的等比数列,故.(2)由(1)可得,所以,.两边同乘以得.上式右边错位相减得.所以.化简得.【题目点拨】本题主要考查求数列的通项公式,以及数列的前项和,熟记等比数列的通项公式与求和公式,以及错位相减法求数列的和即可,属于常考题型.20、(1).(2);(3)【解题分析】
(1)利用等比数列通项公式以及求和公式化简,得到,由,,分别是一个等差数列的第1项,第2项,第5项,利用等差数列的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度林业资源保护与林权流转监管合同3篇
- 个人借款合同范本下载二零二四年度2篇
- 二零二五年钢筋工施工队伍劳务输出合同2篇
- 2025年度教育信息化项目履约担保合同范本4篇
- 二零二五年度炉渣废弃物处理设施运营合同4篇
- 2025年私人抵押车合同范本:汽车金融租赁抵押专用版3篇
- 2025年度城市街道绿化带植物更新合同3篇
- 2025年版中英双语跨境贸易结算三方合同模板3篇
- 常州石油化工企业2025年度消防应急演练合同3篇
- 2025年新春晚会活动策划执行合同3篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- 安徽大学大学生素质教育学分认定办法
- 巴布亚新几内亚离网光储微网供电方案
- 高度限位装置类型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生儿预防接种护理质量考核标准
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
评论
0/150
提交评论