2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题含解析_第1页
2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题含解析_第2页
2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题含解析_第3页
2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题含解析_第4页
2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市宝山区罗店中学数学高一第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)2.样本中共有个个体,其值分别为、、、、.若该样本的平均值为,则样本的方差为()A. B. C. D.3.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.244.设集合,则()A. B. C. D.5.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.6.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.7.已知,所在平面内一点P满足,则()A. B. C. D.8.已知函数在区间上恒成立,则实数的最小值是()A. B. C. D.9.函数的最小值和最大值分别为()A. B. C. D.10.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为()A.1:3 B.3:1 C.2:3 D.3:2二、填空题:本大题共6小题,每小题5分,共30分。11.在轴上有一点,点到点与点的距离相等,则点坐标为____________.12.在△中,三个内角、、的对边分别为、、,若,,,则________13.如图所示,梯形中,,于,,分别是,的中点,将四边形沿折起(不与平面重合),以下结论①面;②;③.则不论折至何位置都有_______.14.若无穷数列的所有项都是正数,且满足,则______.15.若数列满足,且,则___________.16.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前n项和为,,且.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前n项和.(3)在条件(2)下,若不等式对任意正整数n都成立,求的取值范围.18.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.19.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.(1)若,求的长;(2)设,求该空地产生最大经济价值时种植甲种水果的面积.20.已知(1)求的值;(2)求的值.21.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由题意,得出a≠0,再分析不等式开口和判别式,可得结果.【题目详解】由题,因为为一元二次不等式,所以a≠0又因为ax所以a>0Δ=故选B【题目点拨】本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.2、D【解题分析】

根据样本的平均数计算出的值,再利用方差公式计算出样本的方差.【题目详解】由题意可知,,解得,因此,该样本的方差为,故选:D.【题目点拨】本题考查方差与平均数的计算,灵活利用平均数与方差公式进行求解是解本题的关键,考查运算求解能力,属于基础题.3、C【解题分析】

利用“1”的代换结合基本不等式求最值即可【题目详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【题目点拨】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.4、B【解题分析】

补集:【题目详解】因为,所以,选B.【题目点拨】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。5、A【解题分析】

由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【题目详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【题目点拨】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.6、C【解题分析】

由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【题目详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【题目点拨】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.7、D【解题分析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【题目详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【题目点拨】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.8、D【解题分析】

直接利用三角函数关系式的恒等变换,把函数的关系式变形为正弦型函数,进一步利用恒成立问题的应用求出结果.【题目详解】函数,由因为,所以,即,当时,函数的最大值为,由于在区间上恒成立,故,实数的最小值是.故选:D【题目点拨】本题考查了两角和的余弦公式、辅助角公式以及三角函数的最值,需熟记公式与三角函数的性质,同时考查了不等式恒成立问题,属于基出题9、C【解题分析】2.∴当时,,当时,,故选C.10、D【解题分析】

设圆柱的底面半径为,利用圆柱侧面积公式与球的表面积公式建立关系式,算出球的半径,再利用圆柱与球的体积公式加以计算,可得所求体积之比.【题目详解】设圆柱的底面半径为,轴截面正方形边长,则,可得圆柱的侧面积,再设与圆柱表面积相等的球半径为,则球的表面积,解得,因此圆柱的体积为,球的体积为,因此圆柱的体积与球的体积之比为.故选:D.【题目点拨】本题主要考查了圆柱的侧面积和体积公式,以及球的表面积和体积公式的应用,其中解答中熟记公式,合理计算半径之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设点的坐标,根据空间两点距离公式列方程求解.【题目详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【题目点拨】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.12、【解题分析】

利用正弦定理求解角,再利用面积公式求解即可.【题目详解】由,因为,故,.故.故答案为:【题目点拨】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.13、①②【解题分析】

根据题意作出折起后的几何图形,再根据线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识即可判断各选项的真假.【题目详解】作出折起后的几何图形,如图所示:.因为,分别是,的中点,所以是的中位线,所以.而面,所以面,①正确;无论怎样折起,始终有,所以面,即有,而,所以,②正确;折起后,面,面,且,故与是异面直线,③错误.故答案为:①②.【题目点拨】本题主要考查线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识的应用,意在考查学生的直观想象能力和逻辑推理能力,属于基础题.14、【解题分析】

先由作差法求出数列的通项公式为,即可计算出,然后利用常用数列的极限即可计算出的值.【题目详解】当时,,可得;当时,由,可得,上式下式得,得,也适合,则,.所以,.因此,.故答案为:.【题目点拨】本题考查利用作差法求数列通项,同时也考查了数列极限的计算,考查计算能力,属于中等题.15、【解题分析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【题目详解】,即数列是以为首项,为公差的等差数列故答案为:【题目点拨】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.16、【解题分析】

根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【题目详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【题目点拨】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时:;当时:(2)(3)【解题分析】

(1)直接利用等比数列公式得到答案.(2)利用错位相减法得到答案.(3)将不等式转化为,根据双勾函数求数列的最大值得到答案.【题目详解】(1)当时:当时:(2)数列为递增数列,,两式相加,化简得到(3)设原式(为奇数)根据双勾函数知:或时有最大值.时,原式时,原式故【题目点拨】本题考查了等比数列的通项公式,错位相减法求前N项和,恒成立问题,将恒成立问题转化为利用双勾函数求数列的最大值是解题的关键,此题综合性强,计算量大,意在考查学生对于数列公式方法的灵活运用.18、(1)(1)证明见解析【解题分析】

数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【题目详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【题目点拨】本题主要考查了等差数列与等比数列的定义通项公式、指数运算性质、数列递推关系,考查了推理能力与计算能力,属于中档题.19、(1)1或3(2)【解题分析】

试题分析:(1)在中,因为,,,所以由余弦定理,且,,所以,解得或(2)该空地产生最大经济价值等价于种植甲种水果的面积最大,所以用表示出,再利用三角函数求最值得试题解析:(1)连结,已知点在以为直径的半圆周上,所以为直角三角形,因为,,所以,,在中由余弦定理,且,所以,解得或,(2)因为,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若产生最大经济效益,则的面积最大,,因为,所以所以当时,取最大值为,此时该地块产生的经济价值最大考点:①解三角形及正弦定理的应用②三角函数求最值20、(1)20,(2)【解题分析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论