2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题含解析_第1页
2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题含解析_第2页
2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题含解析_第3页
2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题含解析_第4页
2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省咸阳百灵中学数学高一第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中角ABC的对边分别为A.B.c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为()A. B. C. D.2.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.3.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.4.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.85.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.6.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.7.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.48.不等式的解集为()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)9.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.3010.已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.12.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.13.已知,且,则________.14.在等比数列中,,的值为________15.若函数是奇函数,其中,则__________.16.当时,不等式成立,则实数k的取值范围是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题:(1)计算:,,;(2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.18.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.19.已知,设.(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.20.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.21.在边长为2的菱形中,,为的中点.(1)用和表示;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

首先利用同角三角函数的关系式求出sinC的值,进一步利用余弦定理和三角形的面积公式及基本不等式的应用求出结果.【题目详解】△ABC中角ABC的对边分别为a、b、c,cosC,利用同角三角函数的关系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.则,△ABC面积的最大值为,故选D.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于中档题.2、B【解题分析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【题目详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【题目点拨】本题主要考查循环结构由输出结果计算判断条件,难度不大.3、B【解题分析】

函数,由,可得,,因此即可得出.【题目详解】函数由,可得解得,∵在区间内没有零点,

.故选B.【题目点拨】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.4、B【解题分析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.5、C【解题分析】

根据球的体积公式可知两球体积比为,进而得到结果.【题目详解】由球的体积公式知:两球的体积之比故选:【题目点拨】本题考查球的体积公式的应用,属于基础题.6、A【解题分析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【题目详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【题目点拨】本题考查两直线垂直,属于基础题。7、A【解题分析】

由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【题目详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.8、A【解题分析】

将原不等式化简并因式分解,由此求得不等式的解集.【题目详解】原不等式等价于,即,解得.故选A.【题目点拨】本小题主要考查一元二次不等式的解法,属于基础题.9、B【解题分析】

由分层抽样方法即按比例抽样,运算即可得解.【题目详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【题目点拨】本题考查了分层抽样方法,属基础题.10、D【解题分析】

利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案.【题目详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【题目点拨】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【题目详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【题目点拨】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.12、【解题分析】

本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【题目详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【题目点拨】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.13、或【解题分析】

利用正切函数的单调性及周期性,可知在区间与区间内各有一值,从而求出。【题目详解】因为函数的周期为,而且在内单调增,所以有两个解,一个在,一个在,由反正切函数的定义有,或。【题目点拨】本题主要考查正切函数的性质及反正切函数的定义的应用。14、【解题分析】

根据等比数列的性质,可得,即可求解.【题目详解】由题意,根据等比数列的性质,可得,解得.故答案为:【题目点拨】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.15、【解题分析】

定义域上的奇函数,则【题目详解】函数是奇函数,所以,又,则所以填【题目点拨】定义域上的奇函数,我们可以直接搭建方程,若定义域中则不能直接代指.16、k∈(﹣∞,1]【解题分析】

此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【题目详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【题目点拨】本题主要考查利用导数求函数的最值,属于中档题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解题分析】

(1)依据诱导公式以及两角和的正弦公式即可计算出;(2)观察(1)中角度的关系,合情推理出一般结论,然后利用两角和的正弦公式即可证明.【题目详解】(1)同理可得,,.(2)由(1)知,可以猜出:.证明如下:.【题目点拨】本题主要考查学生合情推理论证能力,以及诱导公式和两角和的正弦公式的应用,意在考查学生的数学抽象素养和逻辑推理能力.18、(1);(2)最大值为,最小值为.【解题分析】

(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【题目详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【题目点拨】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦函数的基本性质进行求解,考查分析问题和解决问题的能力,属于中等题.19、(1);(2);平移变换过程见解析.【解题分析】

(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.【题目详解】∵∴∴(1)由题意可知,∴又,∴(2)∵,∴∴∵,∴∴当即时∴∴将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)【题目点拨】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.20、(1);(2),.【解题分析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论