宜昌市重点中学2024届数学高一下期末统考模拟试题含解析_第1页
宜昌市重点中学2024届数学高一下期末统考模拟试题含解析_第2页
宜昌市重点中学2024届数学高一下期末统考模拟试题含解析_第3页
宜昌市重点中学2024届数学高一下期末统考模拟试题含解析_第4页
宜昌市重点中学2024届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宜昌市重点中学2024届数学高一下期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某班由50个编号为01,02,03,…50的学生组成,现在要选取8名学生参加合唱团,选取方法是从随机数表的第1行的第11列开始由左到右依次选取两个数字,则该样本中选出的第8名同学的编号为()495443548217379323783035209623842634916450258392120676572355068877047447672176335025839212067649544354827447A.20 B.25 C.26 D.342.将函数y=sinx-πA.y=sin1C.y=sin13.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行4.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.5.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.156.设集合,,若,则的取值范围是()A. B. C. D.7.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球8.在三棱柱中,底面,是正三角形,若,则该三棱柱外接球的表面积为()A. B. C. D.9.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.已知、为锐角,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.12.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.13.若正实数满足,则的最小值为______.14.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.15.等差数列满足,则其公差为__________.16.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足,,且.(1)求;(2)在中,若,,求.18.已知向量.(1)求的值;(2)若,且,求.19.(1)已知数列的前项和满足,求数列的通项公式;(2)数列满足,(),求数列的通项公式.20.已知同一平面内的三个向量、、,其中(1,2).(1)若||=2,且与的夹角为0°,求的坐标;(2)若2||=||,且2与2垂直,求在方向上的投影.21.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用随机数表依次选出8名学生的二位数的编号,超出范围的、重复的要舍去.【题目详解】从随机数表的第1行的第11列开始由左到右依次选取两个数字,选出来的8名学生的编号分别为:17,37,(93舍去)23,(78舍去)30,35,20,(96舍去)(23舍去)(84舍去)26,1;∴样本选出来的第8名同学的编号为1.故选:D【题目点拨】本题考查了利用随机数表法求抽样编号的问题,属于基础题.2、C【解题分析】

将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-3、B【解题分析】

根据线面平行的性质解答本题.【题目详解】根据线面平行的性质定理,已知直线平面.

对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;

对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;

对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;

对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;

故选:B.【题目点拨】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.4、B【解题分析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【题目详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【题目点拨】本题主要考查循环结构由输出结果计算判断条件,难度不大.5、C【解题分析】

先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【题目详解】因为点满足,所以,则故选C.【题目点拨】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.6、A【解题分析】因为,,且,即,所以.故选A.7、B【解题分析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.8、C【解题分析】

设球心为,的中心为,求出与,利用勾股定理求出外接球的半径,代入球的表面积公式即可.【题目详解】设球心为,的中心为,则,,球的半径,所以球的表面积为.故选:C【题目点拨】本题考查多面体外接球问题,球的表面积公式,属于中档题.9、A【解题分析】

由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【题目详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.10、B【解题分析】

利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【题目详解】因为,且为锐角,则,所以,因为,所以故选:B.【题目点拨】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.12、【解题分析】

根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【题目详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【题目点拨】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.13、【解题分析】

由得,将转化为,整理,利用基本不等式即可求解。【题目详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【题目点拨】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。14、【解题分析】

试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.15、【解题分析】

首先根据等差数列的性质得到,再根据即可得到公差的值.【题目详解】,解得.,所以.故答案为:【题目点拨】本题主要考查等差数列的性质,熟记公式为解题的关键,属于简单题.16、【解题分析】

由题意得出,结合诱导公式,二倍角公式求解即可.【题目详解】,则角的终边可能在第一、二象限由图可知,无论角的终边在第一象限还是第二象限,都有故答案为:【题目点拨】本题主要考查了利用二倍角的余弦公式以及诱导公式化简求值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)将展开得到答案.(2),平方计算得到答案.【题目详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【题目点拨】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.18、(1);(2).【解题分析】

(1)对等式进行平方运算,根据平面向量的模和数量积的坐标表示公式,结合两角差的余弦公式直接求解即可;(2)由(1)可以结合同角的三角函数关系式求出的值,再由同角三角函数关系式结合的值求出的值,最后利用两角和的正弦公式求出的值即可.【题目详解】(1);(2)因为,所以,而,所以,因为,,所以.因此有.【题目点拨】本题考查了已知平面向量的模求参数问题,考查了平面向量数量积的坐标表示公式,考查了两角差的余弦公式,考查了两角和的正弦公式,考查了同角的三角函数关系式的应用,考查了数学运算能力.19、(1);(2).【解题分析】

(1)利用求出数列的通项公式;(2)利用累加法求数列的通项公式;【题目详解】解:(1)①当时,即当时,②①减②得经检验时,成立故(2)()……将上述式相加可得【题目点拨】本题考查作差法求数列的通项公式以及累加法求数列的通项公式,属于基础题.20、(1)(2,4)(2)【解题分析】

(1)由题意可得与共线,设出的坐标,根据||=2,求出参数的值,可得的坐标;

(2)由题意可得,再根据,求出

的值,可得在方向上的投影的值.【题目详解】(1)同一平面内的三个向量、、,其中(1,2),若||=2,且与的夹角为0°,则与共线,故可设(t,2t),t>0,∴2,∴t=2,即(2,4).(2)∵2||=||,即||.∵2与2垂直,∴(2)•(2)=2320,即83•20,即366,即•,∴在方向上的投影为.【题目点拨】本题主要考查两个向量坐标形式的运算,两个向量共线、垂直的性质,属于中档题.21、(1);(2),乙组加工水平高.【解题分析】

(1)根据甲、乙两组数据的平均数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论