




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省文山州五中高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在公比q为整数的等比数列{an}中,Sn是数列{an}A.q=2 B.数列SnC.S8=510 D.数列2.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.3.下图是某圆拱形桥一孔圆拱的示意图,这个圆的圆拱跨度米,拱高米,建造时每隔8米需要用一根支柱支撑,则支柱的高度大约是()A.9.7米 B.9.1米 C.8.7米 D.8.1米4.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)5.已知数列的前项和为,且,则()A. B. C. D.6.已知向量,若,则的最小值为().A.12 B. C.16 D.7.直线与圆相交于点,则()A. B. C. D.8.在中,内角所对的边分别为.若,则角的值为()A. B. C. D.9.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.10.某程序框图如图所示,若输出的结果为,则判断框内应填入的条件可以为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,若,则=_______12.在中,,,,则的面积是__________.13.已知,,且,若恒成立,则实数的取值范围是____.14.已知圆锥的母线长为1,侧面展开图的圆心角为,则该圆锥的体积是______.15.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.16.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角三角形中,内角的对边分别为且.(1)求角的大小;(2)若,,求△的面积.18.如图,为圆的直径,点,在圆上,,矩形和圆所在的平面互相垂直,已知,.(1)求证:平面平面;(2)当时,求多面体的体积.19.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π20.如图,在四边形中,已知,,,,设.(1)求(用表示);(2)求的最小值.(结果精确到米)21.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由等比数列的公比q为整数,得到a2<a3,再由等比数列的性质得出a1a4=a【题目详解】由等比数列的公比q为整数,得到a2由等比数列的性质得出a1a4=a2aSn=a11-qnS8=2所以,数列lgan是以故选:D.【题目点拨】本题考查等比数列基本性质的应用,考查等比数列求和以及等比数列的定义,充分利用等比数列下标相关的性质,将项的积进行转化,能起到简化计算的作用,考查计算能力,属于中等题。2、C【解题分析】
由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【题目详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【题目点拨】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.3、A【解题分析】
以为原点、以为轴,以为轴建立平面直角坐标系,设出圆心坐标与半径,可得圆拱所在圆的方程,将代入圆的方程,可求出支柱的高度【题目详解】由图以为原点、以为轴,以为轴建立平面直角坐标系,设圆心坐标为,,,则圆拱所在圆的方程为,,解得,,圆的方程为,将代入圆的方程,得.故选:A【题目点拨】本题考查了圆的标准方程在生活中的应用,需熟记圆的标准方程的形式,属于基础题.4、C【解题分析】
根据并集的求法直接求出结果.【题目详解】∵,∴,故选C.【题目点拨】考查并集的求法,属于基础题.5、D【解题分析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【题目详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【题目点拨】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.6、B【解题分析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【题目详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【题目点拨】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.7、D【解题分析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【题目详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【题目点拨】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.8、C【解题分析】
根据正弦定理将边化角,可得,由可求得,根据的范围求得结果.【题目详解】由正弦定理得:本题正确选项:【题目点拨】本题考查正弦定理边角互化的应用,涉及到两角和差正弦公式、三角形内角和、诱导公式的应用,属于基础题.9、C【解题分析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.10、D【解题分析】
由已知可得,该程序是利用循环结构计算输出变量S的值,模拟过程分别求出变量的变化情况可的结果.【题目详解】程序在运行过程中,判断框前的变量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此时应该结束循环体,并输出S的值为26,所以判断框应该填入条件为:故选D【题目点拨】本题主要考查了程序框图,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【题目详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【题目点拨】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.12、【解题分析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【题目详解】,过C作于D,则故答案为【题目点拨】本题考查了三角形面积计算,属于简单题.13、(-4,2)【解题分析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14、【解题分析】
根据题意得,解得,求得圆锥的高,利用体积公式,即可求解.【题目详解】设圆锥底面的半径为,根据题意得,解得,所以圆锥的高,所以圆锥的体积.【题目点拨】本题主要考查了圆锥的体积的计算,以及圆锥的侧面展开图的应用,其中解答中根据圆锥的侧面展开图,求得圆锥的底面圆的半径是解答的关键,着重考查了推理与运算能力,属于基础题.15、(4,5)4.【解题分析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【题目详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【题目点拨】本题考查了过两条直线交点的直线系方程,属于基础题.16、;【解题分析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用正弦定理及,便可求出,得到的大小;(2)利用(1)中所求的大小,结合余弦定理求出的值,最后再用三角形面积公式求出值.【题目详解】(1)由及正弦定理,得.因为为锐角,所以.(2)由余弦定理,得,又,所以,所以.考点:正余弦定理的综合应用及面积公式.18、(1)证明见解析;(2)【解题分析】
(1)由题可得,,从而可得平面,由此证明平面平面;(2)过作交于,所以为四棱锥的高,多面体的体积,利用体积公式即可得到答案.【题目详解】(1)证明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵为圆的直径,∴,又,∴平面,∵平面,平面平面;(2)过作交于,由面面垂直性质可得平面,即为四棱锥的高,由是边长为1的等边三角形,可得,又正方形的面积为4,∴..所以.【题目点拨】本题主要考查面面垂直的证明,以及求多面体的体积,要求熟练掌握相应判定定理以及椎体、柱体的体积公式,属于中档题.19、(1)g(x)=sin【解题分析】
(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【题目详解】(1)f(x)==3(sin2xcos=3由题意得g(x)=sin[2(x+π化简得g(x)=sin(2x+π(2)∵π12可得π3∴-1当x=π6时,函数当x=π2时,函数g(x)有最小值【题目点拨】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2)米【解题分析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表达式;(2)在中,由正弦定理,求得,进而可得到,利用三角函数的性质,即可求解.【题目详解】(1)由题意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因为,所以所以当时,取得最小值最小值约为米.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 尿道口溢尿护理讨论
- Excel表格公式培训
- 小学数学教师培训心得
- 宠物用品店创业计划书
- 急诊护理团队精神
- 常用眼药水知识
- 影视剧组食堂服务合同
- 个人业绩考核协议
- 中班分享课课件
- 农田整治与流转协作协议
- 2025-2030羊毛制品行业市场调研分析及发展趋势与投资前景研究报告
- TSGD7002-2023-压力管道元件型式试验规则
- DZ∕T 0222-2006 地质灾害防治工程监理规范(正式版)
- 四川省中小流域暴雨洪水计算表格(尾矿库洪水计算)
- 癌痛规范化的全程管理
- 10kV共箱封闭铜母线桥采购合同
- CAD进阶练习100题
- 枫香精油(征求意见稿)
- 电镀企业安全风险辨识分级管控清单
- 2022年北京市专升本英语真题
- 货币金融学笔记(共60页)
评论
0/150
提交评论