北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题含解析_第1页
北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题含解析_第2页
北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题含解析_第3页
北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题含解析_第4页
北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市昌平区临川育人学校2024届高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛 B.22斛C.36斛 D.66斛2.如图,正方形中,是的中点,若,则()A. B. C. D.3.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为()A.3 B.4 C.5 D.324.若函数的最小正周期为2,则()A.1 B.2 C. D.5.函数f(x)=sin(ωx+π4)(ω>0)的图象在[0,πA.(1,5) B.(1,+∞) C.[6.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-237.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.58.已知两个非零向量,满足,则()A. B.C. D.9.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”10.已知直线是函数的一条对称轴,则的一个单调递减区间是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.12.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.13.已知直线l过定点,且与两坐标轴围成的三角形的面积为4,则直线l的方程为______.14.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.15.中,三边所对的角分别为,若,则角______.16.设等差数列的前项和为,若,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;18.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.19.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.20.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄人数②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.21.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:设圆锥底面半径为r,则14×2×3r=8,所以r=163,所以米堆的体积为14考点:圆锥的性质与圆锥的体积公式2、B【解题分析】

以为坐标原点建立平面直角坐标系,设正方形边长为,利用平面向量的坐标运算建立有关、的方程组,求出这两个量的值,可得出的值.【题目详解】以为坐标原点建立平面直角坐标系,设正方形边长为,由此,,故,解得.故选B.【题目点拨】本题考查平面向量的线性运算,考查平面向量的基底表示,解题时也可以利用坐标法来求解,考查运算求解能力,属于中等题.3、A【解题分析】

由题意:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),我们可以从第六项为1出发,逐项求出各项的取值,可得的所有不同值的个数.【题目详解】解:由题意:如果对正整数(首项)按照上述规则施行变换后的第6项为1,则变换中的第5项一定是2,变换中的第4项一定是4,变换中的第3项可能是1,也可能是8,变换中的第2项可能是2,也可能是16,则的可能是4,也可能是5,也可能是32,故的所有可能的取值为,故选:A.【题目点拨】本题主要考查数列的应用及简单的逻辑推理,属于中档题.4、C【解题分析】

根据可求得结果.【题目详解】由题意知:,解得:本题正确选项:【题目点拨】本题考查余弦型函数最小正周期的求解问题,属于基础题.5、C【解题分析】

结合正弦函数的基本性质,抓住只有一条对称轴,建立不等式,计算范围,即可.【题目详解】当x=π4时,wx+π4=π4w+π4,当【题目点拨】考查了正弦函数的基本性质,关键抓住只有一条对称轴,建立不等式,计算范围,即可.6、D【解题分析】

求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【题目详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【题目点拨】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.7、B【解题分析】

写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【题目详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【题目点拨】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,8、C【解题分析】

根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【题目详解】由题,得,即,,则,所以.故选:C.【题目点拨】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.9、D【解题分析】

写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【题目详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【题目点拨】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.10、B【解题分析】

利用周期公式计算出周期,根据对称轴对应的是最值,然后分析单调减区间.【题目详解】因为,若取到最大值,则,即,此时处最接近的单调减区间是:即,故B符合;若取到最小值,则,即,此时处最接近的单调减区间是:即,此时无符合答案;故选:B.【题目点拨】对于正弦型函数,对称轴对应的是函数的最值,这一点值得注意.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【题目详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【题目点拨】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.12、0.72【解题分析】

根据对立事件的概率公式即可求解.【题目详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【题目点拨】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.13、或.【解题分析】

设直线的方程为,利用已知列出方程,①和②,解方程即可求出直线方程【题目详解】设直线的方程为.因为点在直线上,所以①.因为直线与两坐标轴围成的三角形的面积为4,所以②.由①②可知或解得或故直线的方程为或,即或.【题目点拨】本题考查截距式方程和直线与坐标轴形成的三角形面积问题,属于基础题14、【解题分析】

考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.15、【解题分析】

利用余弦定理化简已知条件,求得的值,进而求得的大小.【题目详解】由得,由于,所以.【题目点拨】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.16、【解题分析】

用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【题目详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【题目点拨】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),乙组加工水平高.【解题分析】

(1)根据甲、乙两组数据的平均数都是并结合平均数公式可求出、的值;(2)利用方差公式求出甲、乙两组数据的方差,根据方差大小来对甲、乙两组技工的加工水平高低作判断.【题目详解】(1)由于甲组数据的平均数为,即,解得,同理,,解得;(2)甲组的个数据分别为:、、、、,由方差公式得,乙组的个数据分别为:、、、、,由方差公式得,,因此,乙组技工的技工的加工水平高.【题目点拨】本题考查茎叶图与平均数、方差的计算,从茎叶图中读取数据时,要注意茎的部分数字为高位,叶子部分的数字为低位,另外,这些数据一般要按照由小到大或者由大到小的顺序排列.18、(1)证明见解析(2)证明见解析【解题分析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【题目详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【题目点拨】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)【解题分析】

(1)根据两圆对称,直径一样,只需圆心对称即可得圆C的标准方程;(2)设直线l的方程为y=﹣x+m与圆C联立方程组,利用韦达定理,设而不求的思想即可求解b范围,即截距的取值范围.【题目详解】(1)圆的圆心坐标为,半径为2设圆的圆心坐标为,由题意可知解得:由对称性质可得,圆的半径为2,所以圆的标准方程为:(2)设直线的方程为,联立得:,设直线与圆的交点,,由,得,(1)因为为钝角,所以,且直线不过点即满足,且又,,所以(2)由(1)式(2)式可得,满足,即,因为,所以直线在轴上的截距的取值范围是【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论