![2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M02/14/38/wKhkGWWiv5mAB7H9AAIaqvNlhNc072.jpg)
![2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M02/14/38/wKhkGWWiv5mAB7H9AAIaqvNlhNc0722.jpg)
![2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M02/14/38/wKhkGWWiv5mAB7H9AAIaqvNlhNc0723.jpg)
![2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M02/14/38/wKhkGWWiv5mAB7H9AAIaqvNlhNc0724.jpg)
![2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M02/14/38/wKhkGWWiv5mAB7H9AAIaqvNlhNc0725.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆维吾尔自治区五大名校数学高一第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A. B. C. D.2.设,,是平面内共线的三个不同的点,点是,,所在直线外任意-点,且满足,若点在线段的延长线上,则()A., B., C. D.3.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则4.设函数的最大值为,最小值为,则与满足的关系是()A. B.C. D.5.函数的图像与函数,的图像的交点个数为()A. B. C. D.6.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.7.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.8.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨9.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列10.“”是“函数,有反函数”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.即非充分又非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C12.若则的最小值是__________.13.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.14.若,则=_________________15.在数列中,,,则__________.16.已知等比数列中,,,若数列满足,则数列的前项和=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,点在边上,(1)求的度数;(2)求的长度.18.在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求()的最大值与最小值.19.如图,在三棱锥中,平面平面为等边三角形,,且,分别为的中点.(1)求证:平面平面;(2)求三棱锥的体积.20.已知,且(1)求的值;(2)求的值.21.已知圆.(1)求圆的半径和圆心坐标;(2)斜率为的直线与圆相交于、两点,求面积最大时直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
将指数形式化为对数形式可得,再利用换底公式即可.【题目详解】解:因为,所以,故选:D.【题目点拨】本题考查了指数与对数的互化,重点考查了换底公式,属基础题.2、A【解题分析】
由题可得:,将代入整理得:,利用点在线段的延长线上可得:,问题得解.【题目详解】由题可得:,所以可化为:整理得:,即:又点在线段的延长线上,所以与反向,所以,故选A【题目点拨】本题主要考查了平面向量中三点共线的推论,还考查了向量的减法及数乘向量的应用,考查了转化思想,属于中档题.3、D【解题分析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【题目详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【题目点拨】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.4、B【解题分析】
将函数化为一个常数函数与一个奇函数的和,再利用奇函数的对称性可得答案.【题目详解】因为,令,则,所以为奇函数,所以,所以,故选:B【题目点拨】本题考查了两角差的余弦公式,考查了奇函数的对称性的应用,属于中档题.5、A【解题分析】
在同一坐标系中画出两函数的图象,根据图象得到交点个数.【题目详解】可得两函数图象如下图所示:两函数共有个交点本题正确选项:【题目点拨】本题考查函数交点个数的求解,关键是能够根据两函数的解析式,通过平移和翻折变换等知识得到函数的图象,采用数形结合的方式得到结果.6、A【解题分析】
先求出外接球的半径,再求球的表面积得解.【题目详解】由题得正方体的对角线长为,所以.故选A【题目点拨】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、B【解题分析】
根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【题目详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【题目点拨】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.8、B【解题分析】
根据必然事件的定义,逐项判断,即可得到本题答案.【题目详解】买一张电影票,座位号可以是2的倍数,也可以不是2的倍数,故A不正确;13个人中至少有两个人生肖相同,这是必然事件,故B正确;车辆随机到达一个路口,可以遇到红灯,也可以遇到绿灯或者黄灯,故C不正确;明天可能下雨也可能不下雨,故D不正确.故选:B【题目点拨】本题主要考查必然事件的定义,属基础题.9、C【解题分析】
判断等比数列,可根据为常数来判断.【题目详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【题目点拨】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.10、A【解题分析】
函数,有反函数,则函数,上具有单调性,可得,即可判断出结论.【题目详解】函数,有反函数,则函数,上具有单调性,.是的真子集,“”是“函数,有反函数”的充分不必要条件.故选:A.【题目点拨】本题考查了二次函数的单调性、反函数、充分条件与必要条件的判定方法,考查推理能力与计算能力,同时考查函数与方程思想、数形结合思想.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【题目详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【题目点拨】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.12、【解题分析】
根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【题目详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【题目点拨】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.13、5【解题分析】设一部门抽取的员工人数为x,则.14、【解题分析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.15、16【解题分析】
依次代入即可求得结果.【题目详解】令,则;令,则;令,则;令,则本题正确结果:【题目点拨】本题考查根据数列的递推公式求解数列中的项,属于基础题.16、【解题分析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)中直接由余弦定理可得,然后得到的度数;(2)由(1)知,在中,由正弦定理可直接得到的值.【题目详解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【题目点拨】本题主要考查正弦定理和余弦定理的应用,考查了计算能力,属于基础题.18、(1),;(2)的最大值是,最小值是.【解题分析】试题分析:(1)由条件列关于公差与公比的方程组,解得,,再根据等差与等比数列通项公式求通项公式(2)化简可得,再根据等比数列求和公式得,结合函数单调性,可确定其最值试题解析:(1)设等差数列的公差为,等比数列的公比为,则解得,,所以,.(2)由(1)得,故,当为奇数时,,随的增大而减小,所以;当为偶数时,,随的增大而增大,所以,令,,则,故在时是增函数.故当为奇数时,;当为偶数时,,综上所述,的最大值是,最小值是.19、(1)证明见详解;(2).【解题分析】
(1)由面面垂直可得线面垂直,再推证面面垂直即可;(2)根据垂直于平面AMO,即可由棱锥的体积公式直接求得体积.【题目详解】(1)在中,因为,且O为AB中点,故AB,因为平面VAB平面ABC,且平面VAB平面ABC,因为CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即证.(2)由(1)可知CO平面VAB,故三棱锥底面MAO上的高为,又因为分别为的中点,故故.故三棱锥的体积为.【题目点拨】本题考查由线面垂直推证面面垂直,以及三棱锥体积的求解,属基础题.20、(1);(2).【解题分析】
(1)由条件先求得然后再用二倍角公式求;(2)利用角的变换求出,在根据的范围确定的值.【题目详解】(1)因为,所以,所以,所以;(2)因为,所以因为,所以,由(1)得,所以=,因为,所以.【题目点拨】根据已知条件求角的步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角.在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是,选余弦较好;若角的范围为,选正弦较好.21、(1)圆的圆心坐标为,半径为;(2)或.【解题分析】
(1)将圆的方程化为标准方程,可得出圆的圆心坐标和半径;(2)设直线的方程为,即,设圆心到直线的距离,计算出直线截圆的弦长,利用基本不等式可得出的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文明督导部申请书
- 工伤款申请书
- DB37-T 4691-2024 农业面源污染负荷估算技术规程
- 大学小班申请书
- 电商行业人才培训的国际化视野与战略
- 2024年高考历史艺体生文化课第十三单元西方人文精神的起源及发展13.33启蒙运动练习
- 2024-2025学年高中历史课时作业2思想家柏拉图岳麓版选修4
- 2024-2025学年新教材高中历史第四单元明清中国版图的奠定与面临的挑战第13课从明朝建立到清军入关学案新人教版必修中外历史纲要上
- 参加选举的申请书
- 二零二五体育馆物业管理与健身设施维护协议书
- 光缆线路施工安全协议书范本
- 成本合约规划培训
- 山东省济宁市2025届高三历史一轮复习高考仿真试卷 含答案
- 五年级数学(小数乘法)计算题专项练习及答案
- 交通法规教育课件
- 产前诊断室护理工作总结
- 6S管理知识培训课件
- 小学校长任期五年工作目标(2024年-2029年)
- 医院培训课件:《猴痘流行病学特点及中国大陆首例猴痘病例调查处置》
- 氢气-安全技术说明书MSDS
- 产科护士临床思维能力培养
评论
0/150
提交评论