版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南灵宝市实验高中高一数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.2.已知函数,若,则()A. B. C. D.3.已知向量,若,则的最小值为().A.12 B. C.16 D.4.若()A. B. C. D.5.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.6.在中,角所对的边分别为,已知,则最大角的余弦值是()A. B. C. D.7.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.8.已知函数(,,)的部分图象如图所示,则()A. B. C. D.9.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.2410.计算的值等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中角所对的边分别为,若则___________12.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.13.已知函数的最小正周期为,若将该函数的图像向左平移个单位后,所得图像关于原点对称,则的最小值为________.14.设的内角、、的对边分别为、、,且满足.则______.15.数列满足下列条件:,且对于任意正整数,恒有,则______.16.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.18.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.21.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【题目详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【题目点拨】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.2、D【解题分析】
令,根据奇偶性定义可判断出为奇函数,从而可求得,进而求得结果.【题目详解】令为奇函数又即本题正确选项:【题目点拨】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.3、B【解题分析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【题目详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【题目点拨】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.4、D【解题分析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.5、D【解题分析】
用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【题目详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【题目点拨】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.6、B【解题分析】
由边之间的比例关系,设出三边长,利用余弦定理可求.【题目详解】因为,所以c边所对角最大,设,由余弦定理得,故选B.【题目点拨】本题考查余弦定理,计算求解能力,属于基本题.7、C【解题分析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【题目详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【题目点拨】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.8、D【解题分析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.9、D【解题分析】由等差数列的性质可得,则,故选D.10、C【解题分析】
由三角正弦的倍角公式计算即可.【题目详解】原式.故选C【题目点拨】本题属于基础题,考查三角特殊值的正弦公式的计算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,;由正弦定理,得,解得.考点:正弦定理.12、【解题分析】
已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【题目详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【题目点拨】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.13、【解题分析】
先利用周期公式求出,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出的表达式,即可求出的最小值.【题目详解】由得,所以,向左平移个单位后,得到,因为其图像关于原点对称,所以函数为奇函数,有,则,故的最小值为.【题目点拨】本题主要考查三角函数的性质以及图像变换,以及型的函数奇偶性判断条件.一般地为奇函数,则;为偶函数,则;为奇函数,则;为偶函数,则.14、4【解题分析】
解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.15、512【解题分析】
直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【题目详解】故选C。【题目点拨】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。16、【解题分析】试题分析:因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】
(1)不等式可化为:,比较与的大小,进而求出解集.(2)恒成立即恒成立,则,进而求得答案.【题目详解】解:(1)不等式可化为:,①当时,不等无解;②当时,不等式的解集为;③当时,不等式的解集为.(2)由可化为:,必有:,化为,解得:.【题目点拨】本题考查含参不等式的解法以及恒成立问题,属于一般题.18、(1)见证明;(2)【解题分析】
(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【题目详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【题目点拨】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.19、(1)-π4【解题分析】
(1)两向量垂直,坐标关系满足x1x2+y1y2=0,由已知可得关于sin【题目详解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【题目点拨】本题考查向量的坐标运算,两向量垂直,求两向量之和的模的最大值,当计算到最大值为3+22时,由平方和公式还可以继续化简,即3+220、(1)证明见解析;(2).【解题分析】
(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【题目详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【题目点拨】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能力与计算能力,属于中等题.21、(1)递减区间为[-2,0)和(0,2【解题分析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【题目详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=2cos∴ t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全球5G网络覆盖项目合作合同
- 2024年城市物流运输合同
- 2024年土地使用权转让合同:房地产开发商购买土地使用权
- 公共安全信访维稳工作方案
- 公共卫生疫情防控方案及应急预案
- 2024年全新启航:劳务输出合同
- 2024年双方担保交易合同
- 2024年地铁沿线商铺租赁合同
- 2024基于区块链技术的供应链管理合同
- 2024年云计算数据中心运营服务合同
- 水墨探索 课件 2024-2025学年岭美版初中美术八年级上册
- 山西省运城市2024-2025学年高二上学期10月月考语文试题
- 20世纪外国文学史课件:“垮掉的一代”
- 九年级物理全册教案【人教版】
- 《中华民族一家亲-同心共筑中国梦》队会课件
- 二十届三中全会精神应知应会知识测试30题(附答案)
- 【A公司企业文化建设问题及优化建议开题报告3400字】
- 2024年高考英语模拟卷1全解全析(北京专用)
- 2024至2030年中国有机硅行业市场深度分析及发展趋势预测报告
- 部编人教版二年级道德与法治上册全册教学设计(含反思)
- 河北省石家庄市第四十四中学2022-2023学年八下期中数学试卷
评论
0/150
提交评论