版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建莆田秀屿下屿中学2024届高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.2.数列中,若,,则()A.29 B.2563 C.2569 D.25573.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.4.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是()A.3球以下(含3球)的人数为10B.4球以下(含4球)的人数为17C.5球以下(含5球)的人数无法确定D.5球的人数和6球的人数一样多5.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.6.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.7.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.8.已知,且,则的最小值为()A.8 B.12 C.16 D.209.设均为正数,且,,.则()A. B. C. D.10.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.12.不共线的三个平面向量,,两两所成的角相等,且,,则__________.13.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)14.已知函数,该函数零点的个数为_____________15.函数的图象在点处的切线方程是,则__________.16.在中,若,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:x04060120Q020(1)你认为哪一个是符合实际的函数模型,请说明理由;(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?18.已知,,其中.(1)求的值;(2)求的值.19.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.20.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.21.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解题分析】
利用递推关系,构造等比数列,进而求得的表达式,即可求出,也就可以得到的值。【题目详解】数列中,若,,可得,所以是等比数列,公比为2,首项为5,所以,.【题目点拨】本题主要考查数列的通项公式的求法——构造法。利用递推关系,选择合适的求解方法是解决问题的关键,常见的数列的通项公式的求法有:公式法,累加法,累乘法,构造法,取倒数法等。3、C【解题分析】
利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【题目详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【题目点拨】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.4、D【解题分析】
据投篮成绩的条形统计图,结合中位数的定义,对选项中的命题分析、判断即可.【题目详解】根据投篮成绩的条形统计图,3球以下(含3球)的人数为,6球以下(含6球)的人数为,结合中位数是5知4球以下(含4球)的人数为不多于17,而由条形统计图得4球以下(含4球)的人数不少于,因此4球以下(含4球)的人数为17所以5球的人数和6球的人数一共是17,显然5球的人数和6球的人数不一样多,故选D.【题目点拨】本题考查命题真假的判断,考查条形统计图、中位数的性质等基础知识,考查运算求解能力,是基础题.5、A【解题分析】
由正弦定理可得,再结合余弦定理求解即可.【题目详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【题目点拨】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.6、D【解题分析】
首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【题目详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【题目点拨】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.7、B【解题分析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.8、C【解题分析】
由题意可得,则,展开后利用基本不等式,即可求出结果.【题目详解】因为,且,即为,则,当且仅当,即取得等号,则的最小值为.故选:C.【题目点拨】本题考查基本不等式的应用,注意等号成立的条件,考查运算能力,属于中档题.9、A【解题分析】试题分析:在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.10、A【解题分析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【题目详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【题目点拨】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【题目详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【题目点拨】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.12、4【解题分析】
故答案为:4【题目点拨】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.13、【解题分析】
观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【题目详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【题目点拨】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题14、3【解题分析】
令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【题目详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【题目点拨】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.15、【解题分析】由导数的几何意义可知,又,所以.16、2;【解题分析】
利用余弦定理可构造关于的方程,解方程求得结果.【题目详解】由余弦定理得:解得:或(舍)本题正确结果:【题目点拨】本题考查利用余弦定理解三角形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择模型①,见解析;(2)80.【解题分析】
(1)由题意可知所选函数模型应为单调递增函数,即可判断选择;(2)将,代入函数型①,可得出的值,进而可得出总耗油量关于速度的函数关系式,进而得解.【题目详解】(1)选择模型①理由:由题意可知所选函数模型应为单调递增函数,而函数模型②为一个单调递减函数,故选择模型①.(2)将,代入函数型①,可得:,则,总耗油量:,当时,W有最小值30.甲地到乙地,这辆车以80km/h的速度行驶才能使总耗油量最少.【题目点拨】本题考查函数模型的实际应用,考查逻辑思维能力,考查实际应用能力,属于常考题.18、(1)(2)【解题分析】
(1)根据题意,由,求解,注意角的范围,可求得值,再根据运用两角和正切公式,即可求解;(2)由题意,配凑组合角,运用两角差余弦公式,即可求解.【题目详解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【题目点拨】本题考查三角恒等变换中的由弦求切、两角和正切公式、两角差余弦公式,考查配凑组合角,考查计算能力,属于基础题.19、(1)(2)答案不唯一,具体见解析(3)1【解题分析】
(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【题目详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【题目点拨】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。20、(1);(2).【解题分析】
(1)根据等差数列公式得到方程组,计算得到答案.(2)先求出,再利用裂项求和求得.【题目详解】(1)等差数列中,,解得:(2)数列的前n项和.【题目点拨】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式的灵活运用及计算能力.21、(1)=;(2).【解题分析】
(1)由,结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024招投标与合同管理信息化系统采购与实施合同3篇
- 16《太阳》第二课时 说课稿-2024-2025学年统编版语文五年级上册
- 2024煤矿开采项目承包合同安全设施建设要求3篇
- 6 将相和 第二课时 说课稿-2024-2025学年语文五年级上册统编版
- 2《我们的班规我们订》 第二课时 说课稿-2024-2025学年道德与法治四年级上册统编版
- 4 我爱学语文(说课稿)-2024-2025学年统编版语文一年级上册
- 2024植物墙合同模板
- 福建省南平市文昌学校2021年高三英语期末试卷含解析
- 福建省南平市外屯中学2021年高三物理联考试卷含解析
- 专项研发借款协议(2024版)版B版
- 《医院药品淘汰管理制度》
- 超声波清洗机日常点检表
- 黑布林阅读初一10《霍莉的新朋友》英文版
- 七年级英语阅读理解50篇(附答案) 七年级英语上册 阅读理解专题训练 人教版 试题下载
- 艺术培训学校章程两篇
- 《新媒体营销与策划》考试复习题库(含答案)
- 数词、介词、形容词(副词)与语法填空(分层训练)(解析版)-【高频考点】2022年高考英语二轮复习讲义+分层训练(浙江专用)
- 保险公司优秀员工个人先进事迹材料【九篇】
- 电商美工年终工作总结
- 浙江宁波广播电视集团发射中心招考聘用笔试参考题库答案解析
- 痛风的诊治指南解读
评论
0/150
提交评论