江苏省苏州第一中学2024届数学高一第二学期期末监测试题含解析_第1页
江苏省苏州第一中学2024届数学高一第二学期期末监测试题含解析_第2页
江苏省苏州第一中学2024届数学高一第二学期期末监测试题含解析_第3页
江苏省苏州第一中学2024届数学高一第二学期期末监测试题含解析_第4页
江苏省苏州第一中学2024届数学高一第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州第一中学2024届数学高一第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.42.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行3.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③相等的角在直观图中仍然相等;④正方形的直观图是正方形.以上结论正确的是()A.①② B.① C.③④ D.①②③④4.在中,内角,,的对边分别为,,,且=.则A. B. C. D.5.若x+2y=4,则2x+4y的最小值是()A.4 B.8 C.2 D.46.直线的倾斜角大小()A. B. C. D.7.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心8.函数的图象大致为()A. B. C. D.9.已知等比数列满足,,则()A. B. C. D.10.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若过点作圆的切线,则直线的方程为_______________.12.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).13.已知向量a=1,2,b=2,-2,c=14.已知为等差数列,,前n项和取得最大值时n的值为___________.15.△ABC中,,,则=_____.16.已知为钝角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.18.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.19.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.20.已知函数,求其定义域.21.函数.(1)求函数的周期和递增区间;(2)若,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【题目详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【题目点拨】本题考查简单的线性规划,解题关键是作出可行域.2、B【解题分析】

根据线面平行的性质解答本题.【题目详解】根据线面平行的性质定理,已知直线平面.

对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;

对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;

对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;

对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;

故选:B.【题目点拨】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.3、A【解题分析】

由直观图的画法和相关性质,逐一进行判断即可.【题目详解】斜二侧画法会使直观图中的角度不同,也会使得沿垂直于水平线方向的长度与原图不同,而多边形的边数不会改变,同时平行直线之间的位置关系依旧保持平行,故:①②正确,③和④不对,因为角度会发生改变.故选:A.【题目点拨】本题考查斜二侧画法的相关性质,注意角度是发生改变的,这是易错点.4、C【解题分析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.5、B【解题分析】试题分析:由,当且仅当时,即等号成立,故选B.考点:基本不等式.6、B【解题分析】

化简得到,根据计算得到答案.【题目详解】直线,即,,,故.故选:.【题目点拨】本题考查了直线的倾斜角,意在考查学生的计算能力.7、A【解题分析】

设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【题目详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【题目点拨】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.8、C【解题分析】

利用函数的性质逐个排除即可求解.【题目详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【题目点拨】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.9、C【解题分析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.10、A【解题分析】

转化条件求出满足要求的P点的范围,求出面积比即可得解.【题目详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【题目点拨】本题考查了几何概型的概率计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【题目详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【题目点拨】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。12、<【解题分析】

直接利用作差比较法解答.【题目详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【题目点拨】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、1【解题分析】

由两向量共线的坐标关系计算即可.【题目详解】由题可得2∵c//∴4λ-2=0故答案为1【题目点拨】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.14、20【解题分析】

先由条件求出,算出,然后利用二次函数的知识求出即可【题目详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【题目点拨】等差数列的是关于的二次函数,但要注意只能取正整数.15、【解题分析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理16、.【解题分析】

利用同角三角函数的基本关系即可求解.【题目详解】由为钝角,且,所以,所以.故答案为:【题目点拨】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)利用余弦定理,解得的长;(Ⅱ)利用正弦定理得,计算得,,再利用为直角三角形,进而可计算的长.【题目详解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,则为直角三角形,所以,即,故.【题目点拨】本题考查余弦定理和正弦定理的简单应用,属于基础题.18、(1)或(2)【解题分析】

(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【题目详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【题目点拨】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.19、(1)(2)【解题分析】

(1)求得,在中运用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面积公式,可得所求值.【题目详解】(1)由题意可得,在中,由余弦定理可得,则;(2)在中,,,,的面积为.【题目点拨】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.20、【解题分析】

由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【题目详解】由题意得:,即,解得:定义域为【题目点拨】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.21、(1)周期为,单调递增区间为;(2).【解题分析】

(1)利用二倍角降幂公式、两角差的正弦公式将函数的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论