2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题含解析_第1页
2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题含解析_第2页
2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题含解析_第3页
2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题含解析_第4页
2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省佛山市南海桂城中学数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的周期为()A. B. C. D.2.对于函数f(x)=2sinxcosx,下列选项中正确的是()A.f(x)在(,)上是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为 D.f(x)的最大值为23.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.44.已知,则的值为()A. B.1 C. D.5.设函数,则满足的的取值范围是()A. B. C. D.6.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.7.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;8.在区间上随机选取一个数,则满足的概率为()A. B. C. D.9.已知关于的不等式的解集为,则的值为()A.4 B.5 C.7 D.910.数列的通项公式为,则数列的前100项和().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数,是与的等比中项,则的最小值是______.12.不等式有解,则实数的取值范围是______.13.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.14.不等式的解集是______.15.若,则=_________16.函数,函数,若对所有的总存在,使得成立,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.18.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.19.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.20.已知,.求和的值.21.已知函数的部分图象如图所示.(1)求的解析式;(2)求的单调增区间并求出取得最小值时所对应的x取值集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据正弦型函数最小正周期的结论即可得到结果.【题目详解】函数的最小正周期故选:【题目点拨】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.2、B【解题分析】

解:,是周期为的奇函数,

对于A,在上是递减的,错误;

对于B,是奇函数,图象关于原点对称,正确;

对于C,是周期为,错误;

对于D,的最大值为1,错误;

所以B选项是正确的.3、B【解题分析】

根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【题目详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【题目点拨】本题属于基础题,利用直线的平行关系,斜率相等求解参数。4、B【解题分析】

化为齐次分式,分子分母同除以,化弦为切,即可求解.【题目详解】.故选:B.【题目点拨】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.5、C【解题分析】

利用特殊值,对选项进行排除,由此得到正确选项.【题目详解】当时,,由此排除D选项.当时,,由此排除B选项.当时,,由此排除A选项.综上所述,本小题选C.【题目点拨】本小题主要考查分段函数求值,考查利用特殊值法解选择题,属于基础题.6、C【解题分析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,

又三点共线,故得.

故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.7、D【解题分析】

根据不等式的性质,结合选项,进行逐一判断即可.【题目详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【题目点拨】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.8、D【解题分析】

在区间上,且满足所得区间为,利用区间的长度比,即可求解.【题目详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【题目点拨】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解题分析】

将原不等式化简后,根据不等式的解集列方程组,求得的值,进而求得的值.【题目详解】由得,依题意上述不等式的解集为,故,解得(舍去),故.故选:D.【题目点拨】本小题主要考查类似:已知一元二次不等式解集求参数,考查函数与方程的思想,属于基础题.10、C【解题分析】

根据通项公式,结合裂项求和法即可求得.【题目详解】数列的通项公式为,则故选:C.【题目点拨】本题考查了裂项求和的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

通过是与的等比中项得到,利用均值不等式求得最小值.【题目详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【题目点拨】本题考查了等比中项,均值不等式,1的代换是解题的关键.12、【解题分析】

由参变量分离法可得知,由二倍角的余弦公式以及二次函数的基本性质求出函数的最小值,即可得出实数的取值范围.【题目详解】不等式有解,等价于存在实数,使得关于的不等式成立,故只需.令,,由二次函数的基本性质可知,当时,该函数取得最小值,即,.因此,实数的取值范围是.故答案为:.【题目点拨】本题考查不等式有解的问题,涉及二倍角余弦公式以及二次函数基本性质的应用,一般转化为函数的最值来求解,考查计算能力,属于中等题.13、【解题分析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.14、【解题分析】

由题可得,分式化乘积得,进而求得解集.【题目详解】由移项通分可得,即,解得,故解集为【题目点拨】本题考查分式不等式的解法,属于基础题.15、【解题分析】

∵,∴∴=1×[+]=1.故答案为:1.16、【解题分析】

分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.【题目详解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),当x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]⊆[1,2],故有3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].故答案为.【题目点拨】本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解“对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立”的含义,转化为f(x)的值域是g(x)的子集.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解题分析】

(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出和的值,然后将表格中的数据代入最小二乘法公式,计算出和的值,可得出关于的线性回归方程,然后将代入回归直线方程即可得出该公司的销售额的估计值.【题目详解】(1)从个季度的数据中任选个季度,这个季度的销售额有种情况:、、、、、、、、、设“这个季度的销售额都超过千万元”为事件,事件包含、、,种情况,所以;(2),,,.所以关于的线性回归方程为,令,得(百万元)所以预测该公司的销售额为百万元.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题.18、(1)见解析(2)6【解题分析】

(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【题目详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【题目点拨】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.19、(1),;(2).【解题分析】

(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【题目详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【题目点拨】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。20、,【解题分析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【题目详解】解:,两边同时平方可得:,又,,∴∴,∴【题目点拨】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.21、(1)(2)单调增区间为,();x取值集合,()【解题分析】

(1)先由函数的最大值求出的值,再由图中对称轴与相邻对称中心之间的距离得出最小正周期,于此得出,再将点代入函数的解析式结合的范围得出的值,于此可得出函数的解析式;(2)解不等式可得出函数的单调递增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论