江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题含解析_第1页
江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题含解析_第2页
江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题含解析_第3页
江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题含解析_第4页
江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市南京师范大学附属中学2024届数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.2.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.563.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.15604.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形5.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.6.下列函数的最小值为的是()A. B.C. D.7.已知,且,则()A. B. C. D.8.已知为等差数列,,则的值为()A.3 B.2 C. D.19.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或10.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若与的夹角是锐角,则实数的取值范围为______.12.如果是奇函数,则=.13.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.14.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.15.已知中,,则面积的最大值为_____16.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.18.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.19.已知数列满足,,.(1)求证数列是等比数列,并求数列的通项公式;(2)设,数列的前项和,求证:20.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.21.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

对分两种情况讨论分析得解.【题目详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【题目点拨】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解题分析】由等差数列的性质得,,其前项之和为,故选A.3、A【解题分析】的项可以由或的乘积得到,所以含的项的系数为,故选A.4、B【解题分析】

利用正弦定理得到答案.【题目详解】故答案为B【题目点拨】本题考查了正弦定理,意在考查学生的计算能力.5、B【解题分析】

利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【题目详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【题目点拨】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。6、C【解题分析】分析:利用基本不等式的性质即可判断出正误,注意“一正二定三相等”的使用法则.详解:A.时显然不满足条件;B.其最小值大于1.D.令因此不正确.故选C.点睛:本题考查基本不等式,考查通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.7、A【解题分析】

根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【题目详解】因为,,所以,所以,所以.故选:A【题目点拨】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.8、D【解题分析】

根据等差数列下标和性质,即可求解.【题目详解】因为为等差数列,故解得.故选:D.【题目点拨】本题考查等差数列下标和性质,属基础题.9、C【解题分析】

直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【题目详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【题目点拨】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.10、B【解题分析】

先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【题目详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【题目点拨】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先求出与的坐标,再根据与夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数的取值范围,.【题目详解】向量,,,,若与的夹角是锐角,则与不共线,且它们乘积为正值,即,且,求得,且.【题目点拨】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.12、-2【解题分析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题13、【解题分析】

先结合求出,再由求解即可【题目详解】由,则故答案为:【题目点拨】本题考查扇形的弧长和面积公式的使用,属于基础题14、【解题分析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【题目详解】依题意.所以方差为.故答案为:.【题目点拨】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15、【解题分析】

设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【题目详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【题目点拨】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.16、①②【解题分析】

对四个命题分别进行判断即可得到结论【题目详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【题目点拨】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【题目详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).18、(1)(2);(3).【解题分析】

(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【题目详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【题目点拨】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)证明见解析,;(2)见解析.【解题分析】

(1)根据递推关系式可整理出,从而可证得结论;利用等比数列通项公式首先求解出,再整理出;(2)根据可求得,从而得到的通项公式,利用裂项相消法求得,从而使问题得证.【题目详解】(1)由得:即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:又即:【题目点拨】本题考查利用递推关系式证明等比数列、求解等比数列通项公式、裂项相消法求解数列前项和的问题,属于常规题型.20、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解题分析】

(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率/组距作为纵坐标,即可做出频率分布直方图.【题目详解】某厂生产的一批零件1000个,差异不明显,且因需要研究的个体很多.

所以适宜用系统抽样.(2)①频率分布表为分组频数频率20.160.380.440.2合计201②频率分布直方图为.分组频数频率频率/组距20.10.0260.30.0680.40.0840.20.04合计201【题目点拨】本题考查频率分布表和根据频率分布表绘制频率分布直方图,属于基础题.21、(1),;(2)【解题分析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论