版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济宁市济宁一中数学高一第二学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.南北朝数学家祖暅在推导球的体积公式时构造了一个中间空心的几何体,经后继学者改进后这个中间空心的几何体其三视图如图所示,下列那个值最接近该几何体的体积()A.8 B.12 C.16 D.242.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.43.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.4.下列命题中错误的是()A.若,则 B.若,则C.若,则 D.若,则5.过点且与直线平行的直线方程是()A. B.C. D.6.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.7.已知角满足,,且,,则的值为()A. B. C. D.8.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.9.当点到直线的距离最大时,的值为()A. B.0 C. D.110.已知圆锥的侧面展开图是一个半径为6,圆心角为的扇形,则圆锥的高为()A. B. C. D.5二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,若,则△ABC的形状是____.12.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.13.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.14.已知向量、满足,,且,则与的夹角为________.15.方程的解集是____________.16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.18.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.(1)若,求的长;(2)设,求该空地产生最大经济价值时种植甲种水果的面积.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面积.20.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求和的值;(2)当时,求函数的最大值和最小值;(3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.21.已知数列的前项和为.(Ⅰ)当时,求数列的通项公式;(Ⅱ)当时,令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由三视图确定此几何体的结构,圆柱的体积减去同底同高的圆锥的体积即为所求.【题目详解】该几何体是一个圆柱挖掉一个同底同高的圆锥,圆柱底为2,高为2,所求体积为,所以C选项最接近该几何体的体积.故选:C【题目点拨】本题考查由三视图确定几何体的结构及求其体积,属于基础题.2、D【解题分析】
利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【题目详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【题目点拨】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.3、C【解题分析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【题目详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【题目点拨】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.4、D【解题分析】
根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,根据不等式传递性可知,A选项命题正确.对于B选项,由于在定义域上为增函数,故B选项正确.对于C选项,由于在定义域上为增函数,故C选项正确.对于D选项,当时,命题错误.故选D.【题目点拨】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.5、D【解题分析】
先由题意设所求直线为:,再由直线过点,即可求出结果.【题目详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选:D【题目点拨】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.6、B【解题分析】
根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【题目详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【题目点拨】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.7、D【解题分析】
根据角度范围先计算和,再通过展开得到答案.【题目详解】,,故答案选D【题目点拨】本题考查了三角函数恒等变换,将是解题的关键.8、B【解题分析】
由条件利用三角函数的周期性和单调性,判断各个选项是否正确,即可求得答案.【题目详解】对于A,因为的周期为,故A错误;对于B,因为|以为最小正周期,且在区间上为减函数,故B正确;对于C,因为的周期为,故C错误;对于D,因为区间上为增函数,故D错误.故选:B.【题目点拨】本题主要考查了判断三角函数的周期和在指定区间上的单调性,解题关键是掌握三角函数的基础知识和函数图象,考查了分析能力,属于基础题.9、C【解题分析】直线过定点Q(2,1),所以点到直线的距离最大时PQ垂直直线,即,选C.10、C【解题分析】
利用扇形的弧长为底面圆的周长求出后可求高.【题目详解】因为侧面展开图是一个半径为6,圆心角为的扇形,所以圆锥的母线长为6,设其底面半径为,则,所以,所以圆锥的高为,选C【题目点拨】圆锥的侧面展开图是扇形,如果圆锥的母线长为,底面圆的半径长为,则该扇形的圆心角的弧度数为.二、填空题:本大题共6小题,每小题5分,共30分。11、钝角三角形【解题分析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【题目详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【题目点拨】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题12、【解题分析】
根据弧长公式即可求解.【题目详解】由弧长公式可得故答案为:【题目点拨】本题主要考查了弧长公式的应用,属于基础题.13、【解题分析】
根据题中条件,类比等差数列的性质,可直接得出结果.【题目详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【题目点拨】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.14、【解题分析】
直接应用数量积的运算,求出与的夹角.【题目详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【题目点拨】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.15、【解题分析】
由方程可得或,然后分别解出规定范围内的解即可.【题目详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【题目点拨】方程的等价转化为或,不要把遗漏了.16、【解题分析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【题目详解】由题意得出.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由古典概型概率计算公式即可求解.【题目详解】(1)由频率分布表可得内的频数为,∴∴内的频率为∴∵内的频率为0.04∴(2)由题意可知,第4组共有4人,第5组共有2人,设第4组的4人分别为、、、;第5组的2人分别为、从中任取2人的所有基本事件为:,,,,,,,,,,,,,,共15个.至少一人来自第5组的基本事件有:,,,,,,,共9个.所以.∴所抽取2人中至少一人来自第5组的概率为.【题目点拨】本题考查了频率分布表及频率分布直方图的应用,列举法表示事件的可能,古典概型概率计算方法,属于基础题.18、(1)1或3(2)【解题分析】
试题分析:(1)在中,因为,,,所以由余弦定理,且,,所以,解得或(2)该空地产生最大经济价值等价于种植甲种水果的面积最大,所以用表示出,再利用三角函数求最值得试题解析:(1)连结,已知点在以为直径的半圆周上,所以为直角三角形,因为,,所以,,在中由余弦定理,且,所以,解得或,(2)因为,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若产生最大经济效益,则的面积最大,,因为,所以所以当时,取最大值为,此时该地块产生的经济价值最大考点:①解三角形及正弦定理的应用②三角函数求最值19、(1)(2)【解题分析】
(1)由已知及正弦定理可得sinC的值,利用大边对大角可求C为锐角,根据同角三角函数基本关系式可求cosC的值.(2)利用三角形内角和定理,两角和的正弦函数公式可求sinB的值,根据三角形的面积公式即可计算得解.【题目详解】(1)由题意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C为锐角,∴cosC===,(2)因为A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC•AB•sinB=.【题目点拨】本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1),(2);.(3)【解题分析】
(1)由相邻最高点距离得周期,从而可得,由对称性可求得;(2)结合正弦函数性质可得最值.(3),先由半个周期大于得出的一个范围,在此范围内再寻找,求出对称轴,由对称轴且得的范围.【题目详解】(1)因为的图象上相邻两个最高点的距离为,所以的最小正周期,而,又因为的图象关于直线对称,所以,即,又,所以.综上,,.(2)由(1)知,当时,,所以,当即时,;当,即时,.(3),的任意一条对称轴与x轴的交点的横坐标都不属于区间,,即,令,得,且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 26718-2024城市轨道交通安全防范系统技术要求
- 广东酒店管理职业技术学院《经典剧目排练》2023-2024学年第一学期期末试卷
- 广东交通职业技术学院《医学是什么》2023-2024学年第一学期期末试卷
- 广东技术师范大学《中医药文化传播》2023-2024学年第一学期期末试卷
- 广东海洋大学《幼儿园玩教具设计与制作》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《中国经济前沿(英语)》2023-2024学年第一学期期末试卷
- 小学生劳动课种花课件
- 《非平稳信号分析》课件
- 赣西科技职业学院《材料力学D》2023-2024学年第一学期期末试卷
- 赣南师范大学《多媒体影像创作》2023-2024学年第一学期期末试卷
- ICD-10疾病编码完整版
- 医疗器械的检查与包装讲解课件
- 高频焊接操作技术规范
- 环氧树脂固化
- GB_T4897-2015刨花板(高清版)
- 公路工程竣工验收办法
- 毕业设计(论文)安徽汽车产业的现状分析及发展战略研究
- (完整word版)直流稳压电源的设计
- 帆软BIFineBI技术白皮书
- 绞车斜巷提升能力计算及绞车选型核算方法
- 6_背景调查表
评论
0/150
提交评论